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The coupled mode parabolic equation~PE! is a generalization of the adiabatic mode PE that includes
mode coupling terms. It is practical to apply this approach to large-scale problems involving
coupling of energy between both modes and azimuths. The solution is expressed in terms of the
normal modes and mode coefficients, which satisfy coupled horizontal wave equations. The coupled
mode PE may be solved efficiently with the splitting method. The first step is equivalent to solving
the adiabatic mode PE over one range step. The second step involves the integration of the coupling
term. The coupling mode PE solution conserves energy, which is an important aspect of a
range-dependent propagation model. The derivation of the coupled mode PE, which involves
completing the square of an operator, is related to the derivation of an adiabatic mode PE that
accounts for ambient flow. Examples are presented to illustrate the accuracy of the coupled mode
PE. © 1997 Acoustical Society of America.@S0001-4966~97!05406-4#
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INTRODUCTION

The Perth–Bermuda1–3 and Heard Island4–7 experiments
have stimulated interest in global-scale ocean acoustics.
very difficult to solve global-scale problems due to the s
and complexity of the medium and the coupling of ener
between both modes and azimuths. The global-scale re
that have been generated2,3,5–8neglect one type of coupling
and are based on adiabatic mode,9–12 parabolic equation
~PE!,13–16and ray approximations. There are indications t
both types of coupling occur for some global-sca
problems.5 Three-dimensional PE models17,18 handle both
types of coupling but are only practical for small-scale pro
lems. In this paper, we derive and test a generalization of
adiabatic mode PE19 that includes coupling terms. It is prac
tical to apply the coupled mode PE to large-scale proble
and possibly even global-scale problems at low frequenc

The adiabatic mode solution is based on the assump
that energy does not couple between the modes~or eigen-
functions! of the depth separated wave equation. The aco
tic field is represented locally in terms of the modes, and
mode coefficients satisfy horizontal wave equations. In so
cases, it is possible to obtain useful information by solv
for only a fraction of the mode coefficients. The horizon
wave equations may be solved efficiently with the P
method,19 which handles caustics and horizontal variations
the properties of the medium. At low frequencies, it is pra
tical to solve global-scale problems with the adiabatic mo
PE.8 This approach is more efficient than three-dimensio
PE models because the number of propagating modes is
ally much smaller than the number of grid points that a
required in a finite-difference treatment of the depth ope
tor.

a!Present address: Naval Command Control, Ocean Survey Center, Sa
ego, CA 92152.
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The coupled mode PE is obtained by including coupli
terms20–29 in the horizontal wave equations. Mode couplin
may also be treated using vertical interface conditions.30 The
splitting solution31 of the coupled mode PE involves the n
merical solution of the adiabatic mode PE~which does not
involve coupled equations! and the integration of a mod
coupling term~which does not involve azimuthal coupling!.
The coupled mode PE solution conserves energy, which i
important property of a range-dependent propagat
model.32–34The derivation of the coupled mode PE involv
completing the square of an operator and is similar to
derivation of the windy PE,35 which is a generalization of the
adiabatic mode PE that accounts for ambient flow. The d
vation of the coupled mode PE is presented in Sec. I.
amples are presented in Sec. II to illustrate the accurac
the coupled mode PE.

I. DERIVATION

We derive the coupled mode PE in this section. To si
plify the derivation, we work in Cartesian coordinates a
neglect attenuation. We later convert to cylindrical coor
nates and include the effects of attenuation as a perturba
by allowing the modal eigenvalues to be complex.30 The
sound speedc and densityr may vary arbitrarily with the
depthz but are assumed to vary gradually with the rangex
and cross rangey. We place a time-harmonic point source
circular frequencyv on the z axis and remove the facto
exp(2 ivt) from the complex pressureP.

In order to handle density variations efficiently we wo
with the reduced pressurep 5 r21/2P, which satisfies the
Helmholtz equation,

¹'
2p1

]2p

]z2
1 k̃ 2p50, ~1!Di-
233(1)/233/6/$10.00 © 1997 Acoustical Society of America
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]2g

]z2
2
1

4 S ]g

]zD
2

, ~2!

wherek5v/c is the wave number,g5log r, and¹'
2 is the

horizontal component of the Laplacian. The solution of E
~1! is expressed in terms of the local normal modes as

p~x,y,z!5(
j
pj~x,y!f j~z;x,y!, ~3!

wherepj is the j th mode coefficient and thej th modef j

and eigenvaluekj
2(x,y) satisfy

]2f j

]z2
1 k̃2f j5kj

2f j , ~4!

E f if j dz5d i j . ~5!

The semicolon in the argument off j indicates slow variation
with respect to the horizontal coordinates. To obtain
leading-order mode coupling correction in the limit
gradual horizontal variations inc andr, we retain only the
first horizontal derivatives off j . We later account for hori-
zontal variations inkj by including an energy-conservatio
correction.

Substituting the normal mode representation into E
~1!, we obtain

(
j

f j~¹'
2pj1kj

2pj !;22(
j

S ]f j

]x

]pj
]x

1
]f j

]y

]pj
]y D .

~6!

Multiplying Eq. ~6! by f i , integrating over depth, and usin
Eq. ~5!, we obtain the horizontal wave equations,

¹'
2pi1ki

2pi;22(
j

SAx,i , j

]pj
]x

1Ay,i , j

]pj
]y D , ~7!

where the coupling coefficientsAx,i , j andAy,i , j are defined
by

Ax,i , j5E f i

]f j

]x
dz, ~8!

Ay,i , j5E f i

]f j

]y
dz. ~9!

The adiabatic mode solution is recovered by neglecting
terms on the right side of Eq.~7!. Placing the mode coeffi
cients into the vectorp, the coupling coefficients into the
matricesAx andAy , and the eigenvalues into the diagon
matrix K2, we obtain

]2p

]x2
1

]2p

]y2
1K2p12Ax

]p

]x
12Ay

]p

]y
50. ~10!

It follows from Eq. ~5! that the coupling matricesAx

52Ax
t andAy52Ay

t are antisymmetric. We refer to solu
tions of Eq. ~10! as continuous coupled mode solutions
opposed to the stepwise coupled mode solutions of Ref.

Completing the square of the range operator in Eq.~10!
and neglecting a higher-order coupling term, we obtain
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]x
1AxD 2p1

]2p

]y2
12Ay

]p

]y
1K2p50. ~11!

Factoring the operator in Eq.~11! under the assumption o
gradual range dependence, we obtain

F ]

]x
1Ax2 i S ]2

]y2
12Ay

]

]y
1K2D 1/2G

3F ]

]x
1Ax1 i S ]2

]y2
12Ay

]

]y
1K2D 1/2Gp50. ~12!

This approach for factoring Eq.~10! was used to derive the
windy PE from a similar horizontal wave equation in whic
advection terms play the role of the coupling terms.35 As-
suming that outgoing energy dominates backscattered
ergy, we obtain the outgoing wave equation:

]p

]x
52Axp1 i S ]2

]y2
12Ay

]

]y
1K2D 1/2p. ~13!

In cylindrical geometry, we remove the spreading fac
r21/2 from p and obtain the following counterpart to Eq
~13!:

]p

]r
52Arp1 i S 1r 2 ]2

]u2
12Au

1

r

]

]u
1K2D 1/2p, ~14!

where the entries ofAr andAu are defined by

Ar ,i , j5E f i

]f j

]r
dz, ~15!

Au,i , j5E f i

1

r

]f j

]u
dz. ~16!

When acoustic energy propagates from a point sourc
a medium with gradual horizontal variations, azimuth
terms are usually dominated by other terms in the wa
equation. For many problems, it is possible to ignore a
muthal terms altogether and apply the uncoupled azim
approximation.36 Even when azimuthal coupling is signifi
cant, the azimuthal terms tend to be less important than o
terms~e.g., the three-dimensional PE models of Refs. 17
18 are based on a narrow-angle expansion in the azim
term but a wide-angle expansion in the depth term!. We use
this fact and observations of solutions of the windy PE
motivate a useful simplification of Eq.~14!. The windy PE is
based on the following outgoing wave equation that is sim
lar to Eq.~14!:

]pj
]r

52 ik jU jr pj1 i S 1r 2 ]2

]u2
12ik jU ju

1

r

]

]u
1kj

2D 1/2pj ,
~17!

where Ujr and Uju are defined in terms of the wind

velocity.35 We have found that the cross term in Eq.~17!,
which involves the product of a flow operator and an a
muthal coupling operator, tends to be dominated by the o
terms. In particular, the solutions of the equation

]pj
]r

52 ik jU jr pj1 i S 1r 2 ]2

]u2
1kj

2D 1/2pj ~18!
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are nearly identical to the solutions of Eq.~17! for the ex-
amples presented in Ref. 35.

Neglecting the cross term in Eq.~14!, we obtain the
coupled mode PE,

]p

]r
52Arp1 i S 1r 2 ]2

]u2
1K2D 1/2p. ~19!

The first term on the right side of Eq.~19! accounts for mode
coupling in the radial direction. The second term accou
for azimuthal coupling and refraction. Neglecting the cro
term to obtain Eq.~18! does not provide a significant adva
tage for the windy PE. Neglecting the cross term to obt
Eq. ~19! leads to a significant simplification of the numeric
solution of the coupled mode PE because it permits the
of alternating directions. Neglecting the cross term can
justified by an asymptotic argument. We regard azimut
coupling as a perturbation and retain only the leading or
mode coupling correction to the adiabatic mode PE. Si
Arp andAup are of the same order, it follows that

UK21Au

1

r

]p

]uU!uArpu. ~20!

In other words, the first term on the right side of Eq.~14!
dominates the cross term.

The solution of Eq.~19! does not conserve energy. On
approach for deriving a coupled mode PE that conserves
ergy would be to perform a WKB analysis that includes ho
zontal derivatives of the environmental parameters. An ea
approach is to incorporate previous results and then ve
that energy is conserved. Energy-conserving solutions ca
obtained by defining a new dependent variable that is rela
to the energy-flux density. The dependent variable in
~19! is missing the correction factorkj

1/2 that occurs in the
complete energy conservation correction.34 Applying this
correction as described in Ref. 19, we defineuj 5 kj

1/2pj and
obtain the energy-conserving coupled mode PE solution

p~r ,u,z!5r21/2(
j

@kj~r ,u!#21/2uj~r ,u!f j~z;r ,u!,

~21!

]u

]r
52Aru1 i S 1r 2 ]2

]u2
1K2D 1/2u, ~22!

whereuj is the j th entry ofu. The initial condition corre-
sponding to a point source atz5z0 is

uj~0,u!5f j~z0 ;0,u!. ~23!

The second term on the right side of Eq.~22! conserves
energy because the adiabatic mode PE conserves ene19

The coupling term produces a rotation ofu and conserves
energy because

dE

dr
5u*

]u

]r
1

]u*

]r
u52u*Aru2u*Ar

tu50, ~24!

whereE5uuu2 is the energy flux. The third equal sign in E
~24! follows from the antisymmetry ofAr .

We solve Eq.~22! with the splitting method,31 which
involves numerical solutions of the equations
235 J. Acoust. Soc. Am., Vol. 102, No. 1, July 1997
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]u

]r
5 i S 1r 2 ]2

]u2
1K2D 1/2u, ~25!

]u

]r
52Aru. ~26!

SinceK2 is diagonal and the cross term in Eq.~14! was
dropped, Eq.~25! is an uncoupled system that reduces to
horizontal wave equations involved in the adiabatic mode
solution. We therefore solve Eq.~25! over a range step usin
the approach described in Ref. 19. The operator square
is approximated using a rational function expansion ab
the representative horizontal wave numberk0. Crank–
Nicolson integration is used for the range discretization. T
azimuth discretization involves a tridiagonal matrix modifi
with entries in the upper right and lower left corners to a
count for periodicity. The numerical solution of Eq.~26! is
obtained using Crank–Nicolson integration.

There are several possible ways to extend or improve
coupled mode PE. When coupling is mostly into neighbor
modes, it is possible to improve efficiency by approximati
Ar with a banded matrix.12 The coupled mode PE can b
modified to account for energy loss due to coupling into
nonpropagating or nontrapped modes by including posi
entries along the main diagonal of the coupling matrix.
should be possible to include the effects of coupling with
stepwise approach of Ref. 30 as an alternative to using
coupling term in Eq.~19!. With this approach, the medium i
approximated by a sequence of range-independent reg
and the transmitted fields across vertical interfaces are
proximated with the energy-conserving condition describ
in Ref. 34. This approach includes higher-order coupl
terms and is a generalization of the step-wise coupled m
solution to three dimensions.

II. IMPLEMENTATION AND EXAMPLES

In this section, we present examples to illustrate and
solutions of the coupled mode PE. Although several pap
have been published on continuous coupled modes, there
parently has not been any benchmark testing to confirm
this technique actually works. The implementation of t
coupled mode PE involves the solution of the eigenva
problem throughout the region of interest. Once the eig
values, eigenfunctions, and coupling coefficients are
tained and stored, the coupled mode PE solution may
obtained efficiently for different combinations of source a
receiver locations. For the adiabatic case, this precalcula
approach12 has been used to solve problems in matched-fi
processing37,38that require replica fields for large numbers
source and receiver locations39

Example A is a two-dimensional problem involving
25-Hz source atz550 m in a 200-m-thick waveguide that i
lossless and of constant density. The waveguide consis
two layers that are divided by an interface at

z5H d0 for r,1 km

d01a sinS 2pr

l D for r.1 km,
~27!
235Abawi et al.: The coupled mode parabolic equation
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where d05100 m, a55 m, andl5200 m. The speed o
sound is 1500 m/s in the upper layer and 1600 m/s in
lower layer. The purpose of this example is to show that
coupling term accurately handles extensive mode coupl
The waveguide supports six modes corresponding to h
zontal phase speeds that range between about 1538 and
m/s. Results for example A appear in Fig. 1. The coup
mode PE solution is in agreement with a reference solu
that was generated using a finite-difference PE model ba
on the complete energy-conservation correction.34 The adia-
batic mode solution breaks down for this problem.

Example B is identical to example A, with the exceptio
that the interface is at

z5d01a sinS 2px

l D . ~28!

We were motivated to consider this problem because co
gated interfaces can cause azimuthal coupling by channe
energy in they direction.17 To handle the wide range o
horizontal phase speeds, we takev/k052000 m/s and ap-
proximate the operator square root in Eq.~22! with an eight-
term rational function. We use range and azimuthal g
spacings of 10 m and 0.25°. Results for example B appea
Fig. 2. Since both types of coupling are important for th
problem, there are significant differences between
coupled mode PE solution and the solutions that neglect

FIG. 1. Transmission loss atz530 m for example A, which is a two-
dimensional problem that involves a sinusoidal interface between two
mogeneous layers. The solid curves correspond to~a! the coupled mode PE
solution and~b! the adiabatic mode solution. The dashed curves corresp
to the energy-conserving PE solution.
236 J. Acoust. Soc. Am., Vol. 102, No. 1, July 1997
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type of coupling. Comparing the left and center columns,
observe that azimuthal coupling is strongest near they axis,
where the corrugations cause channeling. Comparing the
and right columns, we observe that mode coupling is str
gest near thex axis, where range dependence is greatest

Example C involves a 25-Hz source atz5180 m in a
shallow water ocean environment. The sound speed is 1
m/s in the water column and 1700 m/s in the sediment. T
density of the sediment is 1.5 times the density of the wa
The attenuation in the sediment is 0.5 dB/l. The ocean depth

o-

d

FIG. 2. The mode coefficients for example B, which is a three-dimensio
problem that involves a corrugated interface between two homogen
layers. The maximum range is 5 km, the positivex direction is to the right,
and the positivey direction is to the top. The left column contains th
coupled mode PE solutions, the center column contains the uncoupled
muth solution, and the right column contains the adiabatic mode PE s
tion. The modes are shown in increasing order going downward in e
column. The dynamic range is 10 dB, with red corresponding to the hig
intensities.
236Abawi et al.: The coupled mode parabolic equation
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is 200 m for r,5 km and linearly decreases to an apex
r515 km. In the upslope region, the three trapped modes
off and couple into beams in the sediment.40 The purpose of
this example is to illustrate the coupled mode PE for a re
istic example and to illustrate coupling between trapped
nontrapped modes. We truncate the domain atz51200 m
and use 36 modes in the coupled mode PE calculation. C
tour plots for example C appear in Fig. 3. The adiaba
mode solution breaks down in the sediment~the beams are
not correct!. The coupled mode PE solution is accurate in
sediment~the beams are correct!.

III. CONCLUSION

The coupled mode PE was derived by including a c
pling term in the adiabatic mode PE. This technique is e
cient for solving acoustic propagation problems that invo
both mode and azimuthal coupling. The coupled mode P
simplified by neglecting a higher-order cross term that
volves a product of mode and azimuthal coupling operat
Tests involving a similar cross term in the windy PE sugg
that this approximation is robust. The numerical solution
based on standard techniques such as splitting and Cra
Nicolson integration. The coupled mode PE conserves
ergy because the adiabatic mode PE conserves energy
the coupling matrix is antisymmetric. The accuracy of t

FIG. 3. Transmission loss contours for example C, which involves a slop
ocean bottom and mode cutoff.~a! The coupled mode PE solution.~b! The
adiabatic mode solution.
237 J. Acoust. Soc. Am., Vol. 102, No. 1, July 1997
t
ut

l-
d

n-
c

e

-
-
e
is
-
s.
t
s
k–
n-
nd

coupled mode PE was demonstrated for benchmark p
lems. The coupled mode PE was also applied to solv
three-dimensional problem.
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