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Introduction

The problem of scattering of waves from periodic surfaces, especially sinusoidal surfaces has
attracted a fair amount of interest. This problem was first treated by Lord Rayleigh [1] who
used the periodic nature of the surface and the boundary conditions on the surface to reduce
the problem to a set of algebraic equations for the so-called reflection coefficients. He then
proceeded to find these coefficients by an approximate method. Throughout the years many
authors have treated this problem by using approximatemethods like small perturbations when
the surface height is small, and physical optics "Kirchhoff’s method" when the wavenumber
is large compared with the curvature of the surface. More recently, Holford [2] has been able
to solve this problem exactly by an integral equation method for both Dirichlet and Neumann
boundary conditions. Although this problem has been solved for the acoustic waves, the
two-dimensional nature of the boundary makes it possible to solve the same problem for the
electromagnetic waves: that is, solve the scalar wave equation for the tangential component
of the E-field subject to Dirichlet boundary condition, and for the tangential component of the
H-field subject to Neumann boundary condition.

An approximate formula for scattering amplitude was developed by Dashen and Wurmser
[3] which agrees with the Kirchhoff’s solution (physical optics) for small surface curvature and
with the small perturbation solution for small surface heights. We applied this formula to a
sinusoidal surface and computed the normalized scattering amplitude squared as a function of
the ratio of surface amplitude to surface wavelength for a range of frequencies. We repeated
the same computation using the Kirchhoff’s formula, perturbation theory, and small slope
approximation [4]. Comparison of the above results with Holford’s exact results shows that
the solution obtained by the Dashen-Wurmser method is more accurate than the solution
obtained from the other three approximate methods in all regimes. Furthermore, unlike
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Figure 1: The geometry of the problem.

the Kirchhoff’s solution, this solution approaches the perturbation theory solution for small
surface heights. The Dashen-Wurmser formulation like those of Kirchhoff’s does not account
for non-local effects like shadowing and multiple scattering. As the surface height increase,
these effects begin to emerge, at which point the Dashen-Wurmser solution begins to deviate
from the exact solution. The derivation and motivation for Dashen and Wurmser formula are
given in [5], [3], [6].

Theory

Let the sinusoidal surface S be parameterized by the vector x = Gx̂ + b (G)ŷ, (the surface
does not vary along the z-axis). The scattering, therefore, is considered in the x-y plane
which is also the plane of incidence. The unit normal n̂ = (−3b/3Gx̂ + ŷ)/

√
1 + (3b/3G)2

points into the scattering region. The incident and outgoing waves are described by the the
two dimensional wavevectors k and q, respectively. These vectors have the same magnitude
|k| = |q| = : , : = 2c/_, where _ is the radiation wavelength. A bold variable is a two
dimensional vector. For this calculation we have used a sinusoidal surface described by
b (G) = � sin(?G) = � sin(2cG/Λ). The incident angle, \, is measured from the negative
x-axis in the clockwise direction and the scattering angle, V, is measured from the positive
x-axis in the counter clockwise direction as illustrated by Fig(1).

We therefore have:

k = : (cos \x̂ − sin \ŷ) = :G x̂ + :Hŷ,
q = : (cos Vx̂ + sin Vŷ) = @G x̂ + @Hŷ.
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Let us define the vectors Q and W such that:

Q = k − q = &G x̂ +&Hŷ,
W = k + q = ,G x̂ +,Hŷ.

Where,

&G = : (cos \ − cos V),
&H = −: (sin \ + sin V),
,G = : (cos \ + cos V),
,H = : (sin V − sin \).

Then according to the new formula the scattering amplitude is given by [3]:

) = −8
∫
BDA 5 024

� (n, k, q)48Q·X3(, (1)

where

� (n, k, q) = ±&= +
,2
= −&2

= +&2√
&2 −&2

=

tan−1 [√&2 −&2
=

&=

]
,

and

&= = Q · n̂,
,= = W · n̂.

The plus sign in the above equation is used for Dirichlet (soft), and the minus sign is used for
Neumann (hard) boundary condition. The normalization of ) is such that |8)/4|2 gives the
differential scattering cross section. We have

3( =

√
1 + (3b/3G)23G

then (1) for an infinitely long surface becomes:

) = −8
∫ ∞

−∞
� (n, k, q)48(&GG+&Hb (G))

√
1 +

(
3b

3G

)2
3G. (2)

The above integral can be broken up into an infinite sum of integrals each over one period of
the surface:

) = −8
∞∑

==−∞

∫ 2(=+1) c
?

2=c
?

� (n, k, q)48(&GG+&Hb (G))

√
1 +

(
3b

3G

)2
3G. (3)
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If G → G − 2=c
?

, since the surface is periodic, b (G − 2=c
?
) = b (G), then (3) becomes

) = −8
∞∑

==−∞
4
−8&G

2=c
?

∫ 2c
?

0
� (n, k, q)48(&GG+&Hb (G))

√
1 +

(
3b

3G

)2
3G

= −8
[∫ 2c

?

0
� (n, k, q)48(&GG+&Hb (G))

√
1 +

(
3b

3G

)2
3G

] ∞∑
==−∞

4
−8&G

2=c
?

= −8
[∫ 2c

?

0
� (n, k, q)48(&GG+&Hb (G))

√
1 +

(
3b

3G

)2
3G

]
X(&G

?
+ <).

(4)

In the above equation ) will be zero unless &G = −<?, where < is an integer. This implies
that &G can only take discrete values determined by the equation

&G = &G< = : (cos \ − cos V<) = −<? = −
2<c
Λ

,

for all other values of = the above sum is exactly zero. Since : = 2c/_, the above equation
becomes

cos V< = cos \ + < _
Λ
, (5)

which is the familiar grating equation in optics. Similarly,

&H = &H< = : (sin \ + sin V<).

From (4) we conclude that the incident wave is scattered in discrete directions determined by
(5) as shown in Fig.(2).
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Figure 2: Reflection of an incident wave from an infinite sinusoidal surface occurs in discrete
directions. The number and angles of reflection is determined by the angle of incidence and
the ratio of the radiation wavelength, _, to the surface wavelength, Λ, according to Equation
(5). The incident angle in this case is 75 degrees.
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The scattering amplitude for the scattered wave in each direction is therefore given by

)< =

∫ 2c
?

0
� (n, k, q)48(&G<G+&H<b (G))

√
1 +

(
3b

3G

)2
3G. (6)

Results

For a given angle of incidence and the ratio _/Λ we have calculated )< by integrating (6)
numerically. We have also calculated )< using the Kirchhoff formula:

) 8A2ℎ.< = &=

∫ 2c
?

0
48(&G<G+&H<b (G))

√
1 +

(
3b

3G

)2
3G, (7)

and first order perturbation theory :

)%4AC.< = −4:H@H
∫ 2c

?

0
b (G)48&GG3G (8)

for Dirichlet boundary condition and

)%4AC< = −4
(
:2 − :G@G

) ∫ 2c
?

0
b (G)48&GG3G (9)

for Neumann boundary condition [5],[3],[6]. Similarly, in this notation the small slope
approximation [4] for Dirichlet boundary condition is given by

) BB< =
48:H@H
&H

∫ 2c
?

0
48(&G<G+&H<b (G))3G. (10)

and for Neumann boundary condition is given by

) BB< =
48

(
:2 − :G@G

)
&H

∫ 2c
?

0
48(&G<G+&H<b (G))3G. (11)

These results are compared with Holford’s exact results [7]. Holford has computed |(< |2
which is related to |)< |2 by

|(< |2 =
W0
W<
|)< |2,

where

W< = sin V< .

6



In the following pages we compare |(< |2 for indicated values of < as a function surface
amplitude to surface wavelength �/Λ, using the exact method, our method, (6), Kirchhoff’s
method, (7), perturbation theory, (8 and 9), and the small slope approximation, (10 and 11).

Figure 3: Comparison of the scattering amplitude obtained from the new scattering amplitude
formula and other standard formulas with the exact results for _ = Λ and incident angle,
\ = 75 degrees. The direction of reflection is related to < according to Equation (5).
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Figure 4: Comparison of the scattering amplitude obtained from the new scattering amplitude
formula and other standard formulas with the exact results for _ = 0.5Λ and incident angle,
\ = 75 degrees. The direction of reflection is related to < according to Equation (5).
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Figure 5: Comparison of the scattering amplitude obtained from the new scattering amplitude
formula and other standard formulas with the exact results for _ = 0.25Λ and incident angle,
\ = 75 degrees. The direction of reflection is related to < according to Equation (5).
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Figure 6: Comparison of the scattering amplitude obtained from the new scattering amplitude
formula and other standard formulas with the exact results for _ = 0.25Λ and incident angle,
\ = 75 degrees. The direction of reflection is related to < according to Equation (5).

Conclusions

The proceeding plots demonstrate the close agreement between our results, (6), and the exact
results. It can be seen that these results are more accurate than those of Kirchhoff’s (physical
optics) and the small slope approximation in all regimes. Furthermore, it is observed that
unlike Kirchhoff’s solution, our solution approaches that of small perturbation solution, (8,9),
for small surface heights. To save space, plots for angles of incidence other than 75 degrees
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are not presented here. However, we found that even though the agreement between our results
and the exact results deteriorates as the angle of incidence becomes smaller, this agreement is
better than those obtained by the other three methods considered here. The point that needs
to be emphasized is that: as it is shown by the above plots, for small surface heights, when
perturbation theory is valid, all the above results except for Kirchhoff’s agree well with the
exact results . On the other hand at high frequencies and larger surface heights only our results
and Kirchhoff’s have close agreement with the exact results as long as there is no shadowing
and/or multiple scattering. Our formula thus forms a bridge between perturbation theory and
small slope approximation in one limit and Kirchhoff’s approximation in the other limit; and
remains valid throughout the whole range and beyond where they are valid. For large ratios
of surface amplitude to surface wavelength all of the above results are seen to deviate from
exact results. Our formulation like Kirchhoff’s, small slope approximation and perturbation
theory does not account for non-local effects like shadowing and multiple scattering and is
not expected to agree with the exact results when these effects are present. However, these
effects do not begin to occur until the ratio of the surface amplitude to the surface wavelength
is about 0.2. The question why all the approximate results start to deviate from the exact
results even before shadowing and multiple scattering are present is an issue that needs to be
investigated further.
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