The Bending of Bonded Layers Due to Thermal Stress

Ahmad T. Abawi
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265

October 23, 2004

When two layers expand unequally, but are bonded together, there is a natural tendency for the composite to bend. In this report this problem is addressed in two parts. In the first part we consider the bending of two layers which are bonded together such that there is no slip at the interface. In the second part we consider the same problem when the bonding material allows movement at the interface. The following references are used in this work $[1],[2],[3]$ and [4].

I Bending of two bonded layers with no slip at the interface

In this analysis it is assumed that the two layers behave like beams capable of axial and bending deformations, and there is no slip at the interface. A typical configuration is shown below where, t , E , and α are the thickness, Young's modulus and the coefficient of thermal

Figure 1: Two bonded layers with different elastic properties.
expansion, respectively. If $\alpha_{2}>\alpha_{1}$, an increase in temperature causes the bottom layer to stretch more than the top layer. Because the two layers can not move with respect to each other at the interface, the whole structure will bend as shown in Fig.(2) The equilibrium of forces yields

$$
\begin{equation*}
P_{1}=P_{2} \tag{1}
\end{equation*}
$$

Figure 2: Bonded layers with different elastic properties tend to bend due different responses to temperature.
let $P_{1}=P_{2}=P$. The equilibrium of moments yields

$$
\begin{equation*}
P \frac{h}{2}=M_{1}+M_{2} \tag{2}
\end{equation*}
$$

Referring to Fig.(3), the strain due to bending is

$$
\gamma=\frac{\Delta l}{l}=\frac{l+\Delta l-l}{l}=\frac{2 \pi(R+\Delta R)-2 \pi R}{2 \pi R}=\frac{\Delta R}{R}=\frac{t}{2 R} .
$$

The bending moment ,on the other hand is given

$$
\begin{equation*}
M=\int_{-t / 2}^{t / 2} y d F \tag{3}
\end{equation*}
$$

according to the stress-strain relationship

$$
\Delta F=E \frac{\Delta l}{l} \Delta A=\frac{E t}{2 R} \Delta A
$$

Figure 3:
where A is the cross-sectional area of the bent beam. Using this relationship in Eq.(3), we get

$$
M=\frac{E}{R} \int_{-t / 2}^{t / 2} y^{2} d A=\frac{E I}{R}
$$

where

$$
I=\int_{-t / 2}^{t / 2} y^{2} d A
$$

is the moment of inertia of a slice with unit mass per unit area. In our case the cross-section is a rectangle and I becomes

$$
I=\int_{-t / 2}^{t / 2} w y^{2} d y=\frac{w t^{3}}{12}
$$

In view the above relationship, Eq.(2) can be written

$$
\begin{equation*}
P \frac{h}{2}=M_{1}+M_{2}=\frac{E_{1} I_{1}+E_{2} I_{2}}{R} \tag{4}
\end{equation*}
$$

Thermal expansion induces internal tensile and compressive forces and bending. The strain due to these effects for each layer is given

$$
\begin{align*}
\gamma_{1} & =\alpha_{1} T+\frac{P_{1}}{w t_{1} E_{1}}+\frac{t_{1}}{2 R} \tag{5}\\
\gamma_{2} & =\alpha_{2} T-\frac{P_{2}}{w t_{2} E_{2}}-\frac{t_{2}}{2 R} .
\end{align*}
$$

Since there is no slipping, $\gamma_{1}=\gamma_{2}$ or

$$
\begin{equation*}
\alpha_{1} T+\frac{P_{1}}{w t_{1} E_{1}}+\frac{t_{1}}{2 R}=\alpha_{2} T-\frac{P_{2}}{w t_{2} E_{2}}-\frac{t_{2}}{2 R} \tag{6}
\end{equation*}
$$

from Eq.(4)

$$
P_{1}=P_{2}=P=\frac{2}{h}\left(\frac{E_{1} I_{1}+E_{2} I_{2}}{R}\right)
$$

substituting this into Eq.(6) and solving for $\frac{1}{R}$ gives us the curvature of the bent structure

$$
\begin{equation*}
\Gamma=\frac{1}{R}=\frac{\left(\alpha_{2}-\alpha_{1}\right) T}{\frac{h}{2}+\frac{2\left(E_{1} I_{1}+E_{2} I_{2}\right)}{h w}\left(\frac{1}{t_{1} E_{1}}+\frac{1}{t_{2} E_{2}}\right)} \tag{7}
\end{equation*}
$$

where in the above T is the temperature and

$$
I_{i}=\frac{w t_{i}^{3}}{12} \quad i=1,2
$$

Figure 4:

II Bending of two bonded layers with movement at the interface

Two layers of lengths $2 l$, thicknesses of t_{1}, t_{2}, and unit widths bonded by an adhesive of thickness η are shown below where γ_{i}, and $G_{i}, \mathrm{i}=1,2$ are Poisson's ratio and shear modulus respectively. The other parameters have been defined in Section I. Force and moment diagram of a small section of the above structure is shown below Since the whole structure is in equilibrium, the equilibrium of moments requires that

$$
\begin{align*}
& d M_{1} / d x-V_{1}+\tau_{0} t_{1} / 2=0, \\
& d M_{2} / d x-V_{2}+\tau_{0} t_{2} / 2=0, \tag{8}
\end{align*}
$$

the equilibrium of horizontal forces requires that

$$
\begin{align*}
d T_{1} / d x-\tau_{0} & =0 \\
d T_{2} / d x+\tau_{0} & =0 \tag{9}
\end{align*}
$$

and the equilibrium of vertical forces requires that

$$
\begin{align*}
& d V_{1} / d x-\sigma_{0}=0 \\
& d V_{2} / d x+\sigma_{0}=0 \tag{10}
\end{align*}
$$

From elementary bending theories (see Appendix A) we have

$$
\begin{align*}
d^{2} v_{1} / d x^{2} & =-M_{1} / D_{1} \\
d^{2} v_{2} / d x^{2} & =-M_{2} / D_{2} \tag{11}
\end{align*}
$$

where

$$
D_{i}=\frac{E_{i} t_{i}^{3}}{12\left(1-\gamma_{i}^{2}\right)}, \quad i=1,2
$$

are the flexural rigidities. As we found in Section I, the unit enlongation due to thermal stress and bending are given

$$
\begin{align*}
& \frac{d u_{1}}{d x}=\frac{\left(1-\gamma_{1}^{2}\right) T_{1}}{E_{1} t_{1}}-\frac{6 M_{1}\left(1-\gamma_{1}^{2}\right)}{E_{1} t_{1}^{2}}+\left(1+\gamma_{1}\right) \alpha_{1} T \tag{12}\\
& \frac{d u_{2}}{d x}=\frac{\left(1-\gamma_{2}^{2}\right) T_{2}}{E_{2} t_{2}}+\frac{6 M_{2}\left(1-\gamma_{2}^{2}\right)}{E_{2} t_{2}^{2}}+\left(1+\gamma_{2}\right) \alpha_{2} T
\end{align*}
$$

Finally, the stress in the joint material is assumed to depend on the displacements (u_{1}, v_{1}) and (u_{2}, v_{2}) according to the equations

$$
\begin{align*}
\tau_{0} / G_{0} & =\left(u_{1}-u_{2}\right) / \eta \tag{13}\\
\sigma_{0} / E_{0} & =\left(v_{1}-v_{2}\right) / \eta
\end{align*}
$$

here G_{0} and E_{0} are the shear and Young's modulus of the joint material.
Now with the above equations the problem is fully formulated. With appropriate boundary conditions, the analysis is complete. The boundary conditions at $x=l$ are given

$$
\begin{align*}
& M_{1}=M_{2}=0 \\
& T_{1}=T_{2}=0 \tag{14}\\
& V_{1}=V_{2}=0
\end{align*}
$$

The above set of equations (Eq.(8) through Eq.(13)) can be reduced to a single sixth-order differential equation for σ_{0}. A solution of the differential equation can be found containing six constants of integration permitting the six boundary conditions to be satisfied [3]. Following the analysis in [3], the differential equation for σ_{0} is given

$$
\begin{equation*}
\frac{d^{6} \sigma_{0}}{d x^{6}}-\frac{G_{0} c}{\eta} \frac{d^{4} \sigma_{0}}{d x^{4}}+\frac{E_{0} b}{\eta} \frac{d^{2} \sigma_{0}}{r d x^{2}}-\frac{G_{0} E_{0}\left(b c-a^{2}\right) \sigma_{0}}{\eta^{2}}=0 \tag{15}
\end{equation*}
$$

where the constants a , b , and c are defined as

$$
\begin{aligned}
& a=6\left[\frac{\left(1-\gamma_{1}^{2}\right)}{E_{1} t_{1}^{2}}-\frac{\left(1-\gamma_{2}^{2}\right)}{E_{2} t_{2}^{2}}\right], \\
& b=12\left[\frac{\left(1-\gamma_{1}^{2}\right)}{E_{1} t_{1}^{3}}+\frac{\left(1-\gamma_{2}^{2}\right)}{E_{2} t_{2}^{3}}\right], \\
& c=4\left[\frac{\left(1-\gamma_{1}^{2}\right)}{E_{1} t_{1}}+\frac{\left(1-\gamma_{2}^{2}\right)}{E_{2} t_{2}}\right]
\end{aligned}
$$

The solution of Eq.(15) is related to the roots of the algebraic equation

$$
y^{3}-\frac{G_{0} c}{\eta} y^{2}+\frac{E_{0} b}{\eta} y-\frac{G_{0} E_{0}\left(b c-a^{2}\right)}{\eta^{2}}=0
$$

let

$$
\begin{aligned}
a_{0} & =-\frac{G_{0} E_{0}\left(b c-a^{2}\right)}{\eta^{2}}, \\
a_{1} & =\frac{E_{0} b}{\eta}, \\
a_{2} & =-\frac{G_{0} c}{\eta}, \\
r & =\frac{\left(a_{1} a_{2}-3 a_{0}\right)}{6}-\frac{a_{2}^{3}}{27}, \\
q & =\frac{a_{1}}{3}-\frac{a_{2}^{2}}{9} .
\end{aligned}
$$

then the roots of the above algebraic equation are

$$
\begin{aligned}
& y_{1}=\beta_{1}, \\
& y_{2}=\beta_{H}+i \beta_{V}, \\
& y_{3}=\beta_{H}-i \beta_{V} .
\end{aligned}
$$

where

$$
\begin{aligned}
\beta_{1} & =\left(s_{1}+s_{2}\right)-\frac{a_{2}}{3} \\
\beta_{H} & =-\frac{1}{2}\left(s_{1}+s_{2}\right)-\frac{a_{2}}{3}, \\
\beta_{V} & =\frac{\sqrt{3}}{2}\left(s_{1}-s_{2}\right) .
\end{aligned}
$$

and

$$
\begin{aligned}
& s_{1}=\sqrt{r+\sqrt{q^{3}+r^{2}}} \\
& s_{2}=\sqrt{r-\sqrt{q^{3}+r^{2}}}
\end{aligned}
$$

then the solution to (Eq.15) is given

$$
\begin{equation*}
\sigma_{0}=A_{1} \cosh \beta_{1} x+A_{3} \cosh \beta_{H} x \cos \beta_{V} x+A_{5} \sinh \beta_{H} \sin \beta_{V} x . \tag{16}
\end{equation*}
$$

the constants A_{1}, A_{3}, and A_{5} are determined by the boundary conditions (Eq.14). Similarly the shear stress τ_{0} is determined to be

$$
\begin{equation*}
\tau_{0}=C_{1} \sinh \beta_{1} x+C_{2} \sinh \beta_{H} x \cos \beta_{V} x+C_{3} \cosh \beta_{H} x \sin \beta_{V} x \tag{17}
\end{equation*}
$$

The details of expressions for the constants $A_{1} \ldots, C_{3}$ are given in Appendix B.
The radius of curvature of a bent layer, at least to our beam approximation, is proportional to the bending moments M_{1} and $M_{2} . M_{1}$ and M_{2} can be found from the expressions for σ_{0} and τ_{0} by integrating the set of equations (Eq.8) and (Eq.10). The constants of integration can be found from the boundary conditions (Eq.14). Since the integration is straight forward, we skip the details and write down the functional form of $M_{1}(x)$ and $M_{2}(x)$. All the constants appearing in these expressions are given in Appendix B.

$$
\begin{equation*}
M_{1}(x)=\psi_{1} \cosh \beta_{1} x+\xi_{1} \sinh \beta_{H} x \sin \beta_{V} x+\xi_{2} \cosh \beta_{H} x \cos \beta_{V} x+\Omega_{1} x+\Theta_{1}, \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2}(x)=\zeta_{1} \cosh \beta_{1} x-\xi_{3} \sinh \beta_{H} x \sin \beta_{V} x+\xi_{4} \cosh \beta_{H} x \cos \beta_{V} x+\Omega_{2} x+\Theta_{2} \tag{19}
\end{equation*}
$$

III Appendix A

We found in the main text that the unit enlongation in x and y directions of an element $a b c d$ at distance z from the neutral surface are

$$
\epsilon_{x}=\frac{z}{\rho_{x}}, \quad \epsilon_{y}=\frac{z}{\rho_{y}}
$$

where, ρ_{x} and ρ_{y} are the radii of curvature in the x and y directions. From Hook's law

$$
\begin{align*}
& \epsilon_{x}=\frac{1}{E}\left(\sigma_{x}-\gamma \sigma_{y}\right), \tag{A-1}\\
& \epsilon_{y}=\frac{1}{E}\left(\sigma_{y}-\gamma \sigma_{x}\right) . \tag{A-2}
\end{align*}
$$

where γ is Poisson's ratio. From the above equations we find

$$
\begin{equation*}
\sigma_{x}=\frac{E z}{1-\gamma^{2}}\left(\frac{1}{\rho_{x}}+\gamma \frac{1}{\rho_{y}}\right), \tag{A-3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{y}=\frac{E z}{1-\gamma^{2}}\left(\frac{1}{\rho_{y}}+\gamma \frac{1}{\rho_{x}}\right) . \tag{A-4}
\end{equation*}
$$

Figure 5:

The normal stress distribution over the lateral sides of the element in the above figure can be reduced to couples which must be equal to the bending moments

$$
\begin{aligned}
& \int_{-h / 2}^{h / 2} \sigma_{x} z d z d y=M_{x} d y, \\
& \int_{-h / 2}^{h / 2} \sigma_{y} z d z d x=M_{y} d x .
\end{aligned}
$$

Substituting from (Eq.A-3) and (Eq.A-4) for σ_{x} and σ_{y} gives

$$
M_{x}=D\left(\frac{1}{\rho_{x}}+\gamma \frac{1}{\rho_{y}}\right),
$$

and

$$
M_{y}=D\left(\frac{1}{\rho_{y}}+\gamma \frac{1}{\rho_{x}}\right) .
$$

where

$$
D=\frac{E}{1-\gamma^{2}} \int_{-h / 2}^{h / 2} z^{2} d z=\frac{E h^{3}}{12\left(1-\gamma^{2}\right)}
$$

is the flexural rigidity of the plate. In our analysis in the main text we have assumed that the bending occurs only in one direction which means that the relation between the bending moment and flexural rigidity reduces to

$$
\begin{equation*}
M=\frac{D}{\rho} \tag{A-5}
\end{equation*}
$$

From differential geometry, on the other hand, we know that the curvature of a bent beam is given

$$
\frac{1}{\rho}=-\frac{\frac{d^{2} v}{d x^{2}}}{\left(1+\left(\frac{d v}{d x}\right)^{2}\right)^{3 / 2}}
$$

where v denotes the deflection of the beam. For small deflections this relation reduces to

$$
\frac{1}{\rho} \approx-\frac{d^{2} v}{d x^{2}}
$$

From (Eq.A-5) we find

$$
\frac{d^{2} v}{d x^{2}}=-\frac{M}{D}
$$

IV Appendix B

In order to be able to write down more compact expressions for the constants appearing in the main text, we define the following parameters:

$$
\begin{aligned}
\tau= & \left.\frac{\left(9 E_{0} G_{0}\right)}{\eta^{2}}\left[\left(1+\gamma_{1}\right) \alpha_{1}-\left(1+\gamma_{2}\right) \alpha_{2}\right)\right] T \\
C H C & =\cosh \beta_{H} l \cos \beta_{V} l, \\
S H S & =\sinh \beta_{H} l \sin \beta_{V} l, \\
C H S & =\cosh \beta_{H} l \sin \beta_{V} l, \\
S H C & =\sinh \beta_{H} l \cos \beta_{V} l, \\
\beta_{s} & =\left(\beta_{H}^{2}+\beta_{V}^{2}\right), \\
\beta_{d} & =\left(\beta_{H}^{2}-\beta_{V}^{2}\right), \\
\beta_{m} & =\beta_{H} \beta_{V}, \\
p_{1} & =\beta_{1}^{2} \cosh \beta_{1} l, \\
p_{2} & =\beta_{d} C H C-2 \beta_{m} S H S, \\
p_{3} & =\beta_{d} S H S+2 \beta_{m} C H C, \\
p_{4} & =\frac{\sinh \beta_{1} l}{\beta_{1}}, \\
p_{5} & =\frac{\beta_{V}}{\beta_{s}} C H S+\frac{\beta_{H}}{\beta_{s}} S H C,
\end{aligned}
$$

$$
\begin{aligned}
& p_{6}=\frac{\beta_{H}}{\beta_{s}} C H S-\frac{\beta_{V}}{\beta_{s}} S H C \\
& p_{7}=\left(\beta_{1}^{4}+\frac{E_{0} b}{\eta}\right) \cosh \beta_{1} l, \\
& p_{8}=\left[\beta_{d}-4 \beta_{m}^{2}+\frac{E_{0} b}{\eta}\right] C H C-4 \beta_{m} \beta_{d} S H S \\
& p_{9}=\left[\beta_{d}-4 \beta_{m}^{2}+\frac{E_{0} b}{\eta}\right] S H S+4 \beta_{m} \beta_{d} C H C .
\end{aligned}
$$

The constants A_{1}, A_{3}, and A_{5} are then given

$$
\begin{aligned}
& A_{1}=\frac{\tau\left(p_{2} p_{6}-p_{3} p_{5}\right)}{\operatorname{Den}}, \\
& A_{3}=\frac{\tau\left(p_{3} p_{4}-p_{1} p_{6}\right)}{\operatorname{Den}}, \\
& A_{5}=\frac{\tau\left(p_{1} p_{5}-p_{2} p_{4}\right)}{\operatorname{Den}},
\end{aligned}
$$

where

$$
\operatorname{Den}=p_{7}\left(p_{2} p_{6}-p_{3} p_{5}\right)+p_{8}\left(p_{3} p_{4}-p_{1} p_{6}\right)+p_{9}\left(p_{1} p_{5}-p_{2} p_{4}\right)
$$

from here C_{1}, C_{2}, and C_{3} are found to be

$$
\begin{aligned}
C_{1} & =\frac{\eta}{\beta_{1} E_{0} a}\left(\beta_{1}^{4}+\frac{E_{0} b}{\eta}\right) A_{1}, \\
C_{2} & =\frac{\eta}{E_{0} a}\left(\gamma_{1} A_{3}-\gamma_{2} A_{5}\right), \\
C_{3} & =\frac{\eta}{E_{0} a}\left(\gamma_{1} A_{5}+\gamma_{2} A_{3}\right) .
\end{aligned}
$$

Next we define the following set of parameters

$$
\begin{aligned}
\phi_{1} & =\frac{A_{1}}{\beta_{1}} \\
\phi_{2} & =\frac{\left(A_{3} \beta_{V}+A_{5} \beta_{H}\right)}{\beta_{s}} \\
\phi_{3} & =\frac{\left(A_{3} \beta_{H}-A_{5} \beta_{V}\right)}{\beta_{s}} \\
\psi_{1} & =\frac{\left(\phi_{1}-C_{1} \frac{t_{1}}{2}\right)}{\beta_{1}}
\end{aligned}
$$

$$
\begin{aligned}
\psi_{2} & =\frac{\left(\phi_{2}-C_{3} \frac{t_{1}}{2}\right)}{\beta_{s}} \\
\psi_{3} & =\frac{\left(\phi_{3}-C_{2} \frac{t_{1}}{2}\right)}{\beta_{s}}, \\
\zeta_{1} & =\frac{\left(\phi_{1}+C_{1} \frac{t_{2}}{2}\right)}{\beta_{1}}, \\
\zeta_{2} & =\frac{\left(\phi_{2}+C_{3} \frac{t_{2}}{2}\right)}{\beta_{s}}, \\
\zeta_{3} & =\frac{\left(\phi_{3}+C_{2} \frac{t_{2}}{2}\right)}{\beta_{s}}, \\
\Omega_{1} & =-\left(\phi_{1} \sinh \beta_{1} l+\phi_{2} C S H+\phi_{3} S H C\right), \\
\Omega_{2} & =-\Omega_{1}, \\
\xi_{1} & =\psi_{2} \beta_{H}+\psi_{3} \beta_{V}, \\
\xi_{2} & =\psi_{3} \beta_{H}-\psi_{2} \beta_{V}, \\
\xi_{3} & =\zeta_{2} \beta_{H}+\zeta_{3} \beta_{V}, \\
\xi_{4} & =\zeta_{2} \beta_{V}-\zeta_{3} \beta_{H}, \\
\Theta_{1} & =-\psi_{1} \cosh \beta_{1} l-\xi_{1} S H S-\xi_{2} C H C-\Omega_{1} l, \\
\Theta_{2} & =\zeta_{1} \cosh \beta_{1} l+\xi_{3} S H S-\xi_{4} C H C-\Omega_{2} l .
\end{aligned}
$$

References

[1] S. Timoshenko. Analysis of bi-metal thermostats. Journal of Optical Society of America and R.S.I, 11:233-255, 1925.
[2] M. Goland and E. Reissner. The stress in cemented joints. Journal of Applied Mechanics Transactions AMSE, 11:17-27, 1944.
[3] W. T. Chen and C. W. Nelson. Thermal stress in bonded joints. IBM Journal of Research and Development, 23 (2), 1979.
[4] S. Timoshenko. Theory of Elastic Stability. Mc Graw-Hill Book Co., 1956.

