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A cone-sphere is the object shown below. Its resonant frequencies or eigenfrequencies are
the eigenvalues of the wave equation satisfying a given boundary conditions on the surface.
Here, we are interested in solving the wave equation for Dirichlet boundary conditions; in
other words we want the solution to vanish on the surface. A complicated geometry such as
a cone-sphere makes it impossible to separate the wave equation and solve it by the method
of separation of variables. We thus have to turn to numerical techniques. One numerical
method which is relevant to this problem is the Galerkin method which is described at the
end of this report. Since the cone sphere has cylindrical symmetry, let us write the wave
equation in cylindrical coordinates.
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The cone-sphere can be described by

q(z) =

{√
2az − z2, for z ≤ D;

(H − z)Ω, for z ≥ D.

where

Ω = tanα,

D = a(1 + sinα),

H = a(1 + cscα).

Let us define a basis function which vanishes on the surface.

ψj,k,m =
∑

j,k,m

Aj,k,mr
j(q(z)2 − r2)zkeimφ (2)
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Figure 1: A Cone-Sphere

for

m = 0, 1, ..,

k = 0, 1, ..,

j = m,m + 1, ...

where the coefficients Aj,k,m are to be determined. According to the Galerkin method, we
have

< ψj′,k′,m′| 52 |ψj,k,m > + < ψj′,k′,m′|κ2|ψj,k,m >= 0 (3)

where

ψj′,k′,m′ =
∑

j′,k′,m′

rj′(q(z)2 − r2)zk′

eim′φ

or

∑

∫

(ψj′,k′,m′ 52 ψj,k,m + ψj′,k′,m′κ2ψj,k,m)dv = 0, (4)

where the above sum is over all indices. Since ψ = 0 on the surface, according to Green’s
theorem ∫

φ52 ψdv = −
∫

5φ · ψdv +
∫

S
ψn · 5φdS
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Eq.(4) reduces to

∑

∫

(5ψj′,k′,m′ · 5ψj,k,m)dv =
∑

∫

(ψj′,k′,m′κ2ψj,k,m)dv = 0 (5)

The integration over φ yields a delta function which requires that m = m′, then we are left
with

∑

j,k

Aj,k

∫

(5ψj′,k′ · 5ψj,k)rdrdz =
∑

j,k

∫

κ2(ψj′,k′ψj,k)rdrdz (6)

for all j ′ and k′.
where

ψj,k = rj(q(z)2 − r2)zk

and
ψj′,k′ = rj′(q(z)2 − r2)zk′

letting

x ≡ j + j ′,

y ≡ k + k′.

we have

Ileft =
∫ H

0

∫ q(z)

0
(5ψj′,k′ · 5ψj,k)rdrdz

and
Iright =

∫

(ψj′,k′ψj,k)rdrdz

the r integration yields

Ileft =
∫ H

0

{

zyq
x
2 u1

x
+
zyq

x+2

2 u2

x+ 2
+
zyq

x+4

2 u3

x+ 4
+
zyq

x+6

2 u4

x+ 6

}

dz

where

u1 = r−2(q2(jj ′ +m2)),

u2 = −2q(jj ′ + x +m2) + kk′z−2q2 + yz−1q
dq

dz
+ (

dq

dz
)2,

u3 = (j + 2)(j ′ + 2) +m2 − 2kk′qz−2 − yz−1 dq

dz
,

u4 = kk′z−2

The integral Ileft can be split into four integrals

Ileft = I1 + I2 + I3 + I4
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where,

I1 =
∫ H

0
zyq

x+4

2

{

jj ′ +m2

x
− 2(jj ′ + x +m2)

x + 2
+

(j + 2)(j ′ + 2) +m2

x + 4

}

dz,

I2 =
∫ H

0
zy−2y

x+6

2

{

kk′

x + 2
− 2kk′

x + 4
+

kk′

x + 6

}

dz,

I3 =
∫ H

0
zy−1q

x+4

2

dq

dz
(

y

x+ 2
− y

x+ 4
)dz,

I4 =
∫ H

0
zy q

x+2

2

x+ 2
(
dq

dz
)2dz.

and we find

Ileft =
∫ H

0
{ 1

j + j ′ + 2
− 2

j + j ′ + 4
+

1

j + j ′ + 6
}zk+k′

q
j+j′+6

2 dz

All of the above integrals turn out to be incomplete β functions. The incomplete β function
is defined

Ix(a, b) ≡
Bx(a, b)

B(a, b)
≡

∫ x

0
ta−1(1 − t)b−1dt

a and b positive

B(z, w) =
∫ 1

0
tz−1(1 − t)w−1dt

is the complete β function. Defining

β(a, b, x) ≡ B(a, b)Ix(a, b),

we can write all of the above integrals in terms of β(a, b, x).
First, let us define the following parameters

c1 =
jj ′ +m2

x
− 2(jj ′ + x+m2)

x+ 2
+

(j + 2)(j ′ + 2) +m2

x+ 4
,

β1 =
x+ 4

2
,

α1 = y,

c2 =
kk′

x+ 2
− 2kk′

x+ 4
+

kk′

x + 6
,

β2 =
x+ 6

2
,

α2 = y − 2,

c3 = y(
1

x+ 2
− 1

x + 4
),
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β3 =
x+ 4

2
,

α3 = y − 1,

c4 =
1

x+ 4
,

β4 =
x+ 2

2
,

α4 = y,

c5 =
1

j + j ′ + 2
− 2

j + j ′ + 4
+

1

j + j ′ + 6
,

β5 = k + k′,

α5 =
j + j ′ + 6

2
.

Noting that integrals of the form
∫ H

0
c1z

yq
x+4

2 dz

can be written as

∫ H

0
c1z

yq
x+4

2 dz =
∫ D

0
c1z

yq
x+4

2

< dz +
∫ H

D
c1z

yq
x+4

2

> dz

where q< and q> denote the form the function q(z) in the regions z < D and z > D,
respectively. The second integral in the above expression can be written

∫ H

D
c1z

yq
x+4

2

> dz =
∫ H

0
c1z

yq
x+4

2

> dz −
∫ D

0
c1z

yq
x+4

2

> dz.

Skipping a fair amount of algebra, the above integrals are evaluated to be

I1 = c1{(2a)2β1+α1+1γ1 + Ω2β1H2β1+α1+1(ξ1 − ζ1)},
I2 = c2{(2a)2β2+α2+1γ2 + Ω2β2H2β2+α2+1(ξ2 − ζ2)},
I3 = c3{(2a)2β3+α3+2(γ3 − 2ω3) + 2Ω2β3+2H2β3+α3+2((θ3 − ν3) − (ξ3 − ζ3))},
I4 = c4{(2a)2β4+α4+3(γ4 − 4ω4 + 4µ4)

+ 4Ω2β4+4H2β4+α4+3((ξ4 − ζ4) − 2(θ4 − ν4) + (η4 − σ4))},
Iright = c5(2a)

2β5+α5+1γ5 + Ω2β5H2β5+α5+1(ξ5 − ζ5)

Where

γi = β(αi + βi + 1, βi + 1,
D

2a
),

ξi = β(αi + 1, 2βi + 1, 1),

ζi = β(αi + 1, 2βi + 1,
D

H
),
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ωi = β(αi + βi + 2, βi + 1,
D

2a
),

θi = β(αi + 2, 2βi + 1, 1),

νi = β(αi + 2, 2βi + 1,
D

2a
),

µi = β(αi + βi + 3, βi + 1,
D

2a
),

ηi = β(αi + 3, 2βi + 1, 1),

σi = β(αi + 3, 2βi + 1,
D

H
).

Therefore, if we define for every m

uj,k;j′,k′ =
4

∑

i=1

Ii(j, k, j
′, k′)

and
vj,k;j′,k′ = I5(j, k, j

′, k′)

for all j ′ and k′ Eq.(6) can be written

∑

j,k

Aj,kuj,k;j′,k′ =
∑

j,k

κ2vj,k;j′,k′

storing the above matrices by rows as

L = (j −m)kmax + k + 1,

L′ = (j ′ −m)k′max + k′ + 1,

we will get the following matrix equation

∑

L

ALuL,L′ =
∑

L

κ2vL,L′

which, in vector form can be written

A · u = κ2v

the above equation is an asymmetric eigenvalue problem which can be solved by well known
techniques. For α = 10 degrees and a = 1 in arbitrary units, we find the lowest k for m = 0
to be 2.88143.

6



The Galerkin Method

Suppose we have a linear differential or integral operator D, defined on a domain Dx. We
desire a solution ψ(x) of the equation

Dψ(x) = p(x). (7)

If an exact solution is too difficult to obtain, then we can approximate ψ(x) in terms of a
finite set of basis functions gn(x)

ψ(x) ≈
N

∑

n=1

angn(x) (8)

where the coefficients a are unknowns. Since D is linear, we can substitute our expansion
(8) into (7) to obtain

D
N

∑

n=1

angn(x) =
N

∑

n=1

anDgn(x) ≈ p(x). (9)

Since our expansion is not exact, we are left with a residual error term

R(x, a) =
N

∑

n=1

anD[gn(x)] − p(x). (10)

In order to specify a in some reasonable manner, we wish to choose a as to minimize R(x, a)
in some sense. We could choose a set of M points xk, k = 1, 2, ..M , and require that R(x, a)
be zero at each xk. A more general approach would be to specify a set of M weighting
functions Wk(x), k = 1, 2, ..M and require for each k that

∫

Dx

Wk(x)R(x, a)dx =
N

∑

n=1

an

∫

Dx

Wk(x)D(gn(x))dx−
∫

Dx

Wk(x)p(x)dx = 0 (11)

which can be written in matrix form as

Y a = b

where the Yk,n element of the matrix Y is given

Yk,n =
∫

Dx

Wk(x)D(gn(x))dx

and the kth element of the b vector is

bk =
∫

Dx

Wk(x)p(x)dx.
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In the Galerkin method the weighting functions Wk(x) are chosen to be the same as the
basis functions gx(x) so

Yk,n =
∫

gk(x)D(gn(x))dx

and
bk =

∫

gk(x)p(x)dx

Note that in Dirac notation this can be written for all k and n

Yk,n =< gk(x)|D|gn(x) >

and
bk =< gk(x)|p(x) >

from here Eq.(11) can be written for each k

N
∑

n=1

an < gk(x)|D|gn(x) >=< gk(x)|p(x) >

from which an can be determined.
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