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The equations of motion for pressure and displacement fields in a waveguide have been used to
derive an energy-conserving, one-way coupled mode propagation model. This model has three
important properties: First, since it is based on the equations of motion, rather than the wave
equation, instead of two coupling matrices, it only contains one coupling matrix. Second, the
resulting coupling matrix is anti-symmetric, which implies that the energy among modes is
conserved. Third, the coupling matrix can be computed using the local modes and their depth
derivatives. The model has been applied to two range-dependent cases: Propagation in a wedge,
where range dependence is due to variations in water depth and propagation through internal waves,
where range dependence is due to variations in water sound speed. In both cases the solutions are
compared with those obtained from the parabolic equation~PE! method. © 2002 Acoustical
Society of America.@DOI: 10.1121/1.1419088#

PACS numbers: 43.30.Bp@SAC-B#
tic

e
rm

he
a

m
am
n
-
al
ta
a

he
nd
tio
ho
a
o

le
f
da
ri-
e
ce
es
th

el
ity
ke
e

m

id
th

es
u-
ity,
in-
th
ed

m-
al

ers
ou-
ed
and

per
the

for
ich

l-

p.
tic
ing

a
he
n a
s a
in-
to
in
nd

m-
-
ves,
ing
tion

ces
I. INTRODUCTION

The coupled mode theory commonly used in acous
was originally derived by Pierce1 and Milder2 from the wave
equation for the velocity potential. In this formulation th
field in a range-dependent waveguide is expanded in te
local modes with range-dependent coefficients~mode ampli-
tudes!. The application of the continuity of pressure and t
vertical component of particle velocity allows a partial sep
ration of the depth and range variables and yields a syste
second order coupled differential equations for the mode
plitudes. However, as is pointed out by Rutherford a
Hawker,3 while the boundary condition of continuity of ver
tical component of particle velocity is correct for horizont
boundaries, when applied to problems with nonhorizon
boundaries, this boundary condition is only an approxim
tion to the correct boundary condition of the continuity of t
normal component of particle velocity. Rutherford a
Hawker showed that one consequence of this approxima
is nonconservation of energy. They used the WKBJ met
to obtain a solution which satisfies both the proper bound
condition and conserved energy to first order in the slope
the nonhorizontal boundaries and interfaces. This prob
was also addressed by Fawcett,4 who derived a system o
coupled mode equations which satisfies the correct boun
conditions. However, in addition to the two coupling mat
ces, which is typical of all coupled mode theories deriv
from the wave equation, the equations derived by Faw
also contain two other so-called interface matrices. Th
matrices require a knowledge of the range derivatives of
local modes, which can only be computed approximat
The inaccuracy resulting from this along with the complex
involved in solving the system of differential equations ma
this an impractical computational method for solving rang
dependent problems.

In an attempt to reduce the complexity involved in co
puting the coupling matrices, McDonald5 used the original
Pierce–Milder equations to argue that for a wavegu
whose horizontal length scales are much larger than
160 J. Acoust. Soc. Am. 111 (1), Pt. 1, Jan. 2002 0001-4966/2002
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acoustic wavelength only one of the two coupling matric
has significant contribution. By neglecting one of the co
pling matrices and the horizontal derivative of the dens
McDonald was able to derive an expression for the rema
ing coupling matrix in terms of local modes and their dep
derivatives. The expression for the coupling matrix deriv
by McDonald was used by Abawiet al.6 who derived a sys-
tem of one-way coupled mode equations for the mode a
plitudes. Although this method is a practical computation
method for solving range-dependent problems, it still suff
from approximations made by neglecting one of the two c
pling matrices. More importantly, since this method is bas
on the same boundary conditions as those used by Pierce
Milder, the energy among modes is not conserved.

The coupled mode model that is presented in this pa
is derived, not from the wave equation, as is the case for
Pierce–Milder method, but from the equations of motion
the pressure and displacement fields. This method, wh
was first used by Shevchenko,7 has common use in seismo
ogy and geophysics, Odom,8 Maupin9 and Tromp.10 The
derivation in this paper follows the derivation of Trom
While the model derived by Tromp is for the general elas
waveguide, this model is derived for a waveguide consist
of fluid layers. Since the equations of motion constitute
system of two first order coupled differential equations, t
coupled mode equations resulting from them only contai
single coupling matrix. Furthermore, this method provide
natural framework for applying the correct boundary and
terface conditions without adding any more complexity
the numerical solution of the equations. In fact, it is shown
this paper that the proper application of the boundary a
interface conditions not only simplifies the numerical co
putation of the coupling matrix by allowing it to be ex
pressed in terms the local modes and their depth derivati
it also makes it possible to show that the resulting coupl
matrix is anti-symmetric, which guarantees the conserva
of energy among modes.3,6,10

The method presented in this paper and the referen
/111(1)/160/8/$19.00 © 2002 Acoustical Society of America



le
n
t
e
re
nt
te
th

s
en
ic
tw
fi
o
r

on
hi
n
th
e
ee

II
d

. I
tio
e
te
d

i
t
t
a

d
u

t
m

nor-

he
the

the
nor-

ocal

of

-

cited in the above fall in the category of continuous coup
mode theory where the solution of the wave equation i
range-dependent waveguide is obtained by solving of a se
coupled differential equations. The solution for a rang
dependent waveguide can also be obtained by the disc
coupled mode method.11 In this method the range-depende
waveguide is approximated by range-independent stair s
and the coupled mode solution is obtained by matching
solutions of the wave equation for neighboring stair step
their common boundary. This method is easy to implem
numerically and has wide application in ocean acoust
However, the method that is presented in this paper has
advantages over the discrete coupled mode method. The
advantage is it expresses the coupling matrix in terms
physical parameters and thus provides insight into the p
cess of mode coupling by clearly showing what is resp
sible for it. The other, more important advantage is that t
method in principle can be extended to handle propagatio
three dimensions, where the discrete coupled mode me
is designed for propagation in two dimensions and ther
no obvious way to modify it to handle propagation in thr
dimensions.

This paper is organized in the following way. In Sec.
the coupled mode model is derived, where some of the
tails of the derivation are given in the appendices. In Sec
the model is applied to two range-dependent propaga
scenarios. The first one is propagation in a wedge, wh
range-dependence is entirely due to variations in wa
depth. The parameters used in this example are scale
match those used by Coppens and Sanders12 in a model tank
experiment. The second example is propagation through
ternal waves, where range-dependence is entirely due to
variations in water sound speed. The parameters used in
example were those used in a test case in the Shallow W
Acoustics Modeling workshop.13 In both of the above ex-
amples the results obtained from the coupled mode mo
are compared with those obtained from the parabolic eq
tion ~PE! method.14

II. DERIVATION OF THE COUPLED-MODE EQUATIONS

Consider the equations of motion with thex-axis in the
direction of propagation

]xp5rv2ux ,

]xux52
p

rc2
2 ẑ•]zu,

ẑ"u5
1

rv2
]zp.

In the above equationsp is the pressure andu is the displace-
ment vector. The pressure and the normal component of
displacement are continuous across any interface. This
be expressed as

@p#2
150, @ n̂"u#2

150,
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where @z#2
15z12z2 , the 1/2 indicate the value of the

parameterz just above/below the interface andn̂ is the unit
vector normal to the interface.

The field quantities can be expressed as the sum of
mal modes

p~x,z!5(
n

pn~z!eiknx, u~x,z!5(
n

un~x,z!eiknx,

wherepn andun denote the normal modes. Substituting t
above expressions into the equations of motion results in
following relationships for the modes

iknpn5rv2un ,

iknun52
pn

rc2
2]zS 1

rv2
]zpnD ,

~1!

ẑ"un5
1

rv2
]zpn ,

@pn#2
150, @ ẑn•un#2

150.

In the above equationsun denotes thex component of the
displacement.

In a range-dependent environment the pressure and
displacement vector may be expressed as a sum of local
mal modes with range-dependent coefficients,cn(x)

p~x,z!5(
n

cn~x!pn~z;x!eiknx,

~2!

u~x,z!5(
n

cn~x!un~z;x!eiknx.

In this notation the parametric range-dependence of the l
modes at rangex is indicated by the semicolon separatingz
andx.

Substitution of the above expansion into the equations
motion gives

]x(
n

cnpneiknx5(
n

rv2cnuneiknx,

]x(
n

cnuneiknx5(
n

S 2
1

rc2
pn2 ẑ•]zunD cneiknx.

Multiplying the first equation byume2 ikmx and the second
equation bypme2 ikmx, adding the two equations and inte
grating along the depth of the waveguide gives

(
n
E

0

B

$~unpm1pnum!]xcn1cn~pm ]xun1um ]xpn!

1 icnkn~unpm1pnum!%ei (kn2km)x dz

5(
n
E

0

BH 2
1

rc2
pnpm2 ẑ•~]zun!pm

1rv2unumJ cnei (kn2km)x dz. ~3!

Since according to Eq.~1! un5 iknpn /(rv2), we find
161ad T. Abawi: Energy-conserving one-way coupled mode model
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Amncn . ~4!

The details of the above derivation is given in Appendix
In the above equation,Amn is the coupling matrix given by

Amn52F ~kn1km!E
0

B1

r
pm ]x~pn!dz1knE

0

B

pnpm

3]xS 1

r Ddz1Fkn

r
pnpm]xhG

2

1Gei (kn2km)x. ~5!

The above equation is not yet in the desired form, as it c
tains the range derivative of the modes, which is difficult
compute accurately. In the remainder of this section we w
use the modal equations and the boundary and interface
ditions to convert the above equation into one which o
contains the local modes and their depth derivatives.

Consider the mode equations for moden and modem

]zS 1

r
]zpnD1

1

r
~k22kn

2!pn50, ~6!

]zS 1

r
]zpmD1

1

r
~k22km

2 !pm50. ~7!

The modal equation is obtained by substitutingun

5 iknpn /(rv2) into the second equation in Eq.~1!. Next
evaluate

E
0

B

$pm ]x@Eq. ~6!#2@Eq. ~7!#]xpn%dz.

This gives

E
0

BH ]zS ]xS 1

r D ]zpnD pm1]zS 1

r
]z~]xpn! D pm

1
1

r
pnpm ]x~k2!1~k22kn

2!]xS 1

r D pnpm

1~km
2 2kn

2!
1

r
pm ]xpn2]zS 1

r
]zpmD ]xpnJ dz50.

The fifth term in the above equation can be written as

~km2kn!~km1kn!E
0

B1

r
pm ]xpn dz

52E
0

BH ]zS ]xS 1

r D ]zpnD pm1]zS 1

r
]z~]xpn! D pm

1
1

r
pnpm ]x~k2!1~k22kn

2!]xS 1

r D pnpm

2]zS 1

r
]zpmD ]xpnJ dz,

or
162 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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~km1kn!E
0

B 1

r
pm ]xpn dz

5~kn2km!21E
0

BH ]zS ]xS 1

r D ]zpnD pm

1]zS 1

r
]z~]xpn! D pm1

1

r
pnpm]x~k2!

1~k22kn
2!]xS 1

r D pnpm2]zS 1

r
]zpmD ]xpnJ dz. ~8!

We would like to transfer all terms involving the range d
rivatives of the modes from inside the integral to the boun
ary term by using integration by parts. The first term can
written as

E
0

B

]zS ]xS 1

r D ]zpnD pm dz

5F]xS 1

r D ~]zpn!pmG
2

1

2E
0

B

]xS 1

r D ~]zpm!~]zpn!dz.

Similarly, the second and the fifth terms can be written a

E
0

B

]zS 1

r
]z~]xpn! D pm dz

5F1

r
]z~]xpn!pmG

2

1

2E
0

B1

r
]z~pn!]z~pm!dz,

and

2E
0

B

]zS 1

r
]zpmD ]x~pn!dz

52F1

r
]x~pn!~]zpm!G

2

1

1E
0

B1

r
]z~pn!]z~pm!dz.

Substituting these into Eq.~8! gives

~km1kn!E
0

B 1

r
pm ]xpndz

5~kn2km!21E
0

BH S 2]xS 1

r D ~]zpm!~]zpn!

1
1

r
pnpm ]x~k2!1~k22kn

2!]xS 1

r D pnpmJ dz

1F]xS 1

r D ~]zpn!pm1
1

r
]x~]zpn!pm

2
1

r
]x~pn!~]zpm!G

2

1

. ~9!

The boundary term in the above equation may be written

F]xS 1

r D ~]zpn!pm1
1

r
]x~]zpn!pm2

1

r
]x~pn!~]zpm!G

2

1

5F]xS 1

r
]zpnD pm2]x~pn!

1

r
~]zpm!G

2

1

.
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Since the derivative along the interface of a continuous fu
tion f is continuous, we have

@ T̂•¹ f #2
150, where T̂5 x̂1

]h

]x
ẑ.

This gives

@]xf #2
152@]x~h!]z~ f !#2

1 .

Since bothpn and]zpn /r are continuous across the interfa
z5h(x), the above boundary term can be written as

F]x~h!]z~pn!
1

r
~]zpm!2]xh ]zS 1

r
]zpnD pmG

2

1

.

With the help of the wave equation, Eq.~6!, this may be
written as

F]x~h!]z~pn!
1

r
~]zpm!1]xh

1

r
~k22kn

2!pnpmG
2

1

.

Substituting this into Eq.~9! and the result into Eq.~5! yields
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002 Ahm
c-
~km2kn!Amn5H E

0

BF @~k22knkm!pnpm

2]zpn ]zpm#]xS 1

r D1
pnpm

r
]x~k2!Gdz

1]xhF1

r
]zpn ]zpm1

1

r
~k2

2knkm!pnpmG
2

1J ei (kn2km)x. ~10!

The expression for the coupling matrix given by the abo
equation is the main result of this paper. It shows the eff
of mode coupling due to contribution from volumetric an
bathymetric variations in the waveguide separately. The
part of the coupling matrix containing the integral is due
contribution from volumetric variations in the waveguid
such as variations in sound speed and density as a functio
range. The second part is due to contribution from bathym
ric variations in range, i.e., variations in water depth, as
evident from the presence of]xh.

The coupling matrix has two important properties. Fir
it is anti-symmetric, i.e.,Amn52Anm

† . This implies that en-
resulting
puted using

on the right
FIG. 1. Propagation in an oceanic wedge: The water depth is constant at 200 m for the first 5 km and it slowly decreases to zero in the next 7.5 km
in a wedge angle of 1.55 deg. The top left panel shows the acoustic field due a 25 Hz source placed at 180 m as a function range and depth com
the coupled mode model. The bottom left panel shows the acoustic field computed using the adiabatic mode model. The top and bottom panels
show a comparison of the transmission loss as a function of range computed using the PE model~solid! the coupled mode model~dotted! for two receiver
depths.
163ad T. Abawi: Energy-conserving one-way coupled mode model
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FIG. 2. Propagation through internal waves: The ocean environment consists of a 200 m layer over a bottom half space. The sound speed in t
modeled to simulate fluctuations due to internal waves. The top left panel shows the sound speed fluctuations in the water. The top right panel
acoustic field in this environment due to a 100 Hz source placed at 100 m computed using the coupled mode model. The bottom two panels show a
of the transmission between the PE model~solid!, the coupled mode model~dotted!, and the adiabatic coupled mode model~dashed!. The transmission loss
is computed at a receiver depth of 100 m and for source frequencies of 25 and 100 Hz.
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ergy is conserved among modes. Second, it only contains
modes and their depth derivatives. This means that the
pling matrix can easily be computed using the local mo
and their depth derivatives, which can be obtained from
normal mode code such asKRAKEN.15

III. EXAMPLES

In this section the one-way coupled mode model dev
oped in the previous section is applied to two rang
dependent cases. In the first example we use the one
coupled model to compute acoustic propagation an oce
wedge wherein range-dependence is due to variations in
water depth. In the second example propagation through
ocean with internal waves is computed where the ocean
vironment is chosen such that range-dependence is ent
due to variations in sound speed. The results are comp
with those obtained using the parabolic equation P14

method.

A. Propagation in a wedge

The ocean environment in this example is scaled to c
respond to the model tank experiment reported by Copp
and Sanders.12 The water depth is initially 200 m for the firs
5 km and then it slowly decreases to zero in the next 7.5
164 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002
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resulting in a wedge angle of approximately 1.55 deg.
approximate the branch cut integral in the modal represe
tion of the field, a 1000 m deep false bottom is used. T
waveguide consists of two isovelocity layers: a water la
over a bottom layer. The water sound speed is 1500 m/s
its density is 1.0 g/cm3. The bottom sound speed is 1700 m
with a density of 1.15 g/cm3. The attenuation in the bottom
is 0.5 dB/l. A 25 Hz source is placed at 180 m. The
environmental parameters are chosen to correspond to t
used by Coppens and Sanders.

The acoustic field in the waveguide is computed us
Eq. ~2! with the modal coefficients,cm , obtained from the
solution of Eq.~4!. The first order differential equation fo
the modal coefficients, Eq.~4!, is solved by using fourth-
order Runge–Kutta integration. To obtain the modes and
coupling matrix as a function of range, the wedge is divid
into range-independent stair steps. The local modes and
local coupling matrix using Eq.~10! are computed in each
stair step and updated in the differential equation. The s
size in the two examples that are presented in this paper i
m. However, a step size of 50 m gives identical results.

The results of the above computation are shown in F
1. The top left panel in Fig. 1 shows the acoustic field co
puted using the one-way coupled mode model describe
this paper. It can be seen that as the water depth decre
Ahmad T. Abawi: Energy-conserving one-way coupled mode model
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at
the water modes~there are three water modes in this e
ample! cutoff in the form of discrete beams radiating into t
bottom. The experimental data obtained by Coppens
Sanders show the exact same behavior. Jensen
Kuperman16 used the parabolic equation method to mo
the acoustic propagation in this example and found res
identical to those shown in the top left panel of Fig. 1. Th
interpreted the slow disappearance of the discrete w
modes into the bottom as an indication that energy conta
in a given mode does not couple into the next lower mo
but couples almost entirely into the continuous mode sp
trum. While this effect, which is a consequence of mo
coupling, is implicitly accounted for in the parabolic equ
tion ~PE! formulation, the coupled mode model explicit
accounts for it through the coupling matrix. The two pan
on the right in Fig. 1 show a comparison of the transmiss
loss computed using the one-way coupled model and the
model for two receiver depths. The close agreement betw
the two models clearly demonstrates that the one-w
coupled mode model correctly accounts for mode coupli
If the coupling matrix in the one-way coupled mode mod
are set equal to zero, the one-way coupled mode mode
duces to the adiabatic mode model. The bottom left pane
Fig. 1 shows the acoustic field computed using the adiab
mode solution. Observe that the adiabatic mode solu
does not have the correct field behavior near cutoff. While
the coupled mode solution modes gradually radiate their
ergy to the bottom near cutoff, in the adiabatic mode solut
this process occurs abruptly because there is no mecha
for the transfer of energy between modes.

B. Propagation in internal waves

The ocean environment in this example is one of the
cases used at the Shallow Water Acoustic workshop.13 It con-
sists of 200 m of water over a 400 m, isovelocity botto
The bottom density 1.5 g/cm3 and its sound speed was 170
m/s. The sound speed profile and the velocity fluctuati
due to internal waves in the water column are modeled
cording to13

c~z,r !5c~z!1Dc~z,r !,

where

c~z!5H 1515.010.016z z,26

1490~1.010.25~e2b1b21.0!! z.26

and

Dc~z,r !5
z

25
e2z/25cos 2pr .

In the aboveb5(z2200)/500 andr is measured in km. The
top left panel in Fig. 2 shows the sound speed profile for t
example. The top right panel shows the acoustic field in
waveguide for a 100 Hz source place at 30 m. The bott
two panels in Fig. 2 show a comparison of the adiaba
normal mode and the coupled mode solutions with the
solution for two source frequencies. In both cases the
ceiver depth is at 70 m. The coupled mode solution agr
well with PE solution at both frequencies while the adiaba
J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002 Ahm
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normal mode solution does not agree with the parab
equation solution at all. This is more evident at the high
frequency where the effects of the internal waves, and t
the mode coupling due to them, is stronger.
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APPENDIX A: THE MODE ORTHOGONALITY
RELATIONSHIP

The mode orthogonality equation is obtained by mu
plying the mode equation~6! by pm and Eq.~7! by pn sub-
tracting the resulting equations and integrating to give

E
0

BFpm ]zS 1

r
]zpnD2pn ]zS 1

r
]zpmD Gdz

1~km
2 2kn

2!E
0

B 1

r
pmpn dz50.

Integrating the first integral by parts results in bounda
terms

pm

1

r
]zpnU

0

B

2pn

1

r
]zpmU

0

B

.

Since either the mode or its derivative is zero at the bou
aries, there is no contribution from the above interface ter
What remains is

~km2kn!~km1kn! E
0

B 1

r
pmpn dz50.

For mÞn,

~km1kn!E
0

B 1

r
pmpn dz50,

and form5n we choose to normalize the modes such th

~km1kn!E
0

B 1

r
pmpn dz52kndmn .

APPENDIX B: DETAILS LEADING TO EQ. „4…

We start by multiplying the first equation in Eq.~1! by
um and the second equation in Eq.~1! by pm , adding the two
equations and integrating to get

iknE
0

B

~pnum1unpm!dz

5E
0

BS 2
pnpm

rc2
2]zS 1

rv2
]zpnD pm1rv2unumD dz.
165ad T. Abawi: Energy-conserving one-way coupled mode model
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Integrating the middle term on the right-hand side by pa
yields

E
0

B

]zS 1

rc2
]zpnD pm dz5F S 1

rv2
]zpnD pmG

2

1

2E
0

BS 1

rv2
]zpnD ]zpm dz.

Since the quantities inside the square brackets are contin
across the interface, the boundary term is zero. This resul

iknE
0

B

~pnum1unpm!dz5E
0

BS 2
pnpm

rc2
1

1

rv2
~]zpn!

3~]zpm!1rv2unumD dz. ~B1!

Next consider the following term in Eq.~1!, which can be
integrated to give,

E
0

B

ẑ•~]zun!pm dz5@ ẑ"unpm#2
12E

0

B

~ ẑ"un ]zpm)dz.

~B2!

The continuity condition for the normal component of t
displacement can be written as

@ n̂"un#2
15@~2 ẑ1]xhx̂!•un#2

150.

This gives,

@ ẑ"un#2
15~]xh!un .

Sincepm is continuous across the interface, Eq.~B2! reduces
to

E
0

B

ẑ•~]zun!pm dz5@~]xh!unpm#2
12E

0

B

~ ẑ•un ]zpm!dz.

Substituting this into Eq.~3! and using Eq.~B1! gives

(
n

H ]xcnE
0

B

~unpm1pnum!dz1cnE
0

B

~pm ]xun

1um ]xpn!dz1cn@~]xh!unpm#2
1ei (kn2km)x50.

Next substituting forun5 iknpn /v2r gives

(
n

H ~]xcn!~kn1km!E
0

B 1

r
pnpm dz1cn~kn1km!

3E
0

B

~]xpn!
pm

r
dz1cn~]xkn!E

0

B 1

r
pnpm dz

1cnknE
0

B

]xS 1

r D pnpmdz

1cnF ~]xh!
knpnpm

r G
2

1

ei (kn2km)xJ 50. ~B3!

Using the orthogonality of the modes we find,

2 ]xcmkm1cm ]xkm5 (
nÞm

Amncn ,
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us
in

where the coupling matrix,Amn is defined by Eq.~10!. For
m5n Eq. ~B3! becomes,

2 ]xcnkn1cn ]xkn1cnknE
0

BS 2~]xpn!
pn

r
1pn

2 ]xS 1

r D Ddz

1cnF ~]xh!
knpn

2

r G
2

1

50.

This can be written as

2 ]xcnkn1cn ]xkn1cnknE
0

B

]xS pn
2

r Ddz

1cnF ~]xh!
knpn

2

r G
2

1

50.

It is shown in Appendix C that

E
0

B

]xS pn
2

r Ddz52]xhF1

r
pn

2G
2

1

, ~B4!

which gives

2 ]xcnkn1cn ]xkn50.

APPENDIX C: DERIVATION OF EQ. „B4…

The integral across the waveguide can be written as

E
0

B

]xS pn
2

r Ddz5E
0

h1

]xS pn
2

r Ddz1E
h2

B

]xS pn
2

r Ddz.

Each one of the above integrals can be written as,

E
0

h1

]xS pn
2

r Ddz5]xE
0

h1S pn
2

r Ddz2]x~h1!Fpn
2

r G
h1

,

and

E
h2

B

]xS pn
2

r Ddz5]xE
h2

B S pn
2

r Ddz1]x~h2!Fpn
2

r G
h2

.

Substituting for these quantities we find

E
0

B

]xS pn
2

r Ddz5]xE
0

BS pn
2

r Ddz2]xhFpn
2

r G
2

1

.

The integral on the right-hand side is a constant which gi

E
0

B

]xS pn
2

r Ddz52]xhFpn
2

r G
2

1
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