An energy-conserving one-way coupled mode propagation model
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The equations of motion for pressure and displacement fields in a waveguide have been used to
derive an energy-conserving, one-way coupled mode propagation model. This model has three
important properties: First, since it is based on the equations of motion, rather than the wave
equation, instead of two coupling matrices, it only contains one coupling matrix. Second, the
resulting coupling matrix is anti-symmetric, which implies that the energy among modes is
conserved. Third, the coupling matrix can be computed using the local modes and their depth
derivatives. The model has been applied to two range-dependent cases: Propagation in a wedge,
where range dependence is due to variations in water depth and propagation through internal waves,
where range dependence is due to variations in water sound speed. In both cases the solutions are
compared with those obtained from the parabolic equatPB method. ©2002 Acoustical
Society of America.[DOI: 10.1121/1.1419088

PACS numbers: 43.30.BSAC-B]

I. INTRODUCTION acoustic wavelength only one of the two coupling matrices
has significant contribution. By neglecting one of the cou-

The coupled mode theory commonly used in acoustic$|ing matrices and the horizontal derivative of the density,
was originally derived by Pieréend Mildef from the wave  pcDonald was able to derive an expression for the remain-
equation for the velocity potential. In this formulation the jng coupling matrix in terms of local modes and their depth

field in a range-dependent waveguide is expanded in termMgeriyatives. The expression for the coupling matrix derived
local modes with range-dependent coefficidm®de ampli- by McDonald was used by Abawet al® who derived a sys-

tudes. The application of the continuity of pressure and theg, o one-way coupled mode equations for the mode am-

vertical component of particle velocity allows a partial sepa-p iy jes. Although this method is a practical computational
ration of the depth and range vgrlables gnd yields a system %ethod for solving range-dependent problems, it still suffers
second order coupled differential equations for the mode ameom approximations made by neglecting one of the two cou-

plitudes. However, as is pointed out by Rutherford andpling matrices. More importantly, since this method is based

Hawker® while the boundary condition of continuity of ver- L .
. . - . on the same boundary conditions as those used by Pierce and
tical component of particle velocity is correct for horizontal . .

,\/Illder, the energy among modes is not conserved.

boundar!es, when applied to pr_qblems with nonhonzqnta The coupled mode model that is presented in this paper
boundaries, this boundary condition is only an approxima-

tion to the correct boundary condition of the continuity of the's_der'vedi not from the wave equation, asis the case for the
normal component of particle velocity. Rutherford and Pierce—Milder method, but from the equations of motion for

Hawker showed that one consequence of this approximatio“1e pressure and displacement fields. This m_ethoq, which
as first used by Shevchenkdias common use in seismol-

is nonconservation of energy. They used the WKBJ method" X & e o
to obtain a solution which satisfies both the proper boundar)(?gy and geophysics, OdoMmMaupir® and Tromp.® The

condition and conserved energy to first order in the slope of€rivation in this paper follows the derivation of Tromp.
the nonhorizontal boundaries and interfaces. This problenfVhile the model derived by Tromp is for the general elastic
was also addressed by Fawcetyho derived a system of wavegwde, this model is denveq for a wavegwde consisting
coupled mode equations which satisfies the correct boundaff fluid layers. Since the equations of motion constitute a
conditions. However, in addition to the two coupling matri- System of two first order coupled differential equations, the
ces, which is typical of all coupled mode theories derivedcoupled mode equations resulting from them only contain a
from the wave equation, the equations derived by Fawcetingle coupling matrix. Furthermore, this method provides a
also contain two other so-called interface matrices. ThesBatural framework for applying the correct boundary and in-
matrices require a knowledge of the range derivatives of théerface conditions without adding any more complexity to
local modes, which can only be computed approximatelythe numerical solution of the equations. In fact, it is shown in
The inaccuracy resulting from this along with the complexitythis paper that the proper application of the boundary and
involved in solving the system of differential equations makeinterface conditions not only simplifies the numerical com-
this an impractical computational method for solving range{utation of the coupling matrix by allowing it to be ex-
dependent problems. pressed in terms the local modes and their depth derivatives,
In an attempt to reduce the complexity involved in com-it also makes it possible to show that the resulting coupling
puting the coupling matrices, McDonaldised the original matrix is anti-symmetric, which guarantees the conservation
Pierce—Milder equations to argue that for a waveguideof energy among mode<:°
whose horizontal length scales are much larger than the The method presented in this paper and the references
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cited in the above fall in the category of continuous coupledvhere[] =7, —{_, the +/— indicate the value of the
mode theory where the solution of the wave equation in garameter just above/below the interface andis the unit
range-dependent waveguide is obtained by solving of a set @fector normal to the interface.

coupled differential equations. The solution for a range-  The field quantities can be expressed as the sum of nor-
dependent waveguide can also be obtained by the discretgal modes

coupled mode methoth.In this method the range-dependent

waveguide is approximated by range-independent stair steps p(x Z):z pa(2)ekX,  u(x Z):E Uy (x,Z)eknx

and the coupled mode solution is obtained by matching the n n

solutions of the wave equation for neighboring stair steps E\R/herepn andu, denote the normal modes. Substituting the

their c_omlrlnon k()jOLlf]ndary_.dThls ml_etht(_)d IS easy to mplen:_engbove expressions into the equations of motion results in the
numerically and has wide application in ocean acous 'Csfollowing relationships for the modes

However, the method that is presented in this paper has two
advantages over the discrete coupled mode method. The first iKnpn=pw?U,,
advantage is it expresses the coupling matrix in terms of

physical parameters and thus provides insight into the pro- . _ P i
. - . |knun_ é’Z aan !
cess of mode coupling by clearly showing what is respon- pc? 2
sible for it. The other, more important advantage is that this (1)
method in principle can be extended to handle propagationin .
three dimensions, where the discrete coupled mode method Z'u“_ﬁﬁzp”’

is designed for propagation in two dimensions and there is

no obvious way to modify it to handle propagation in three [pa]f=0, [in-un]f=0.

dimensions. )
This paper is organized in the following way. In Sec. Il In_ the above equations,

the coupled mode model is derived, where some of the de(j|splacement. ,

tails of the derivation are given in the appendices. In Sec. Il N @ range-dependent environment the pressure and the

the model is applied to two range-dependent propag(,jltioﬂlsplacement_vector may be expressed as asum of local nor-

scenarios. The first one is propagation in a wedge, Wher@al modes with range-dependent coefficienttx)

range-dependence is entirely due to variations in water .

depth. The parameters used in this example are scaled to P(X.2)=2 Ca(X)pn(z: X)€",

match those used by Coppens and Sartdéarsa model tank " @

experiment. The second example is propagation through in- B O ikex

ternal waves, where range-dependence is entirely due to the “(X’Z)_En: Ca(X)Un(Z;X) €70,

variations in water sound speed. The parameters used in this

example were those used in a test case in the Shallow Watét this notation the parametric range-dependence of the local

Acoustics Modeling workshop In both of the above ex- modes at rang& is indicated by the semicolon separating

amples the results obtained from the coupled mode modéndx.

are compared with those obtained from the parabolic equa- Substitution of the above expansion into the equations of

tion (PE) method** motion gives

denotes thex component of the

axE Cnpneiknxzz szcnuneiknxy
n n
Il. DERIVATION OF THE COUPLED-MODE EQUATIONS
. 1 “ .

Consider the equations of motion with tikeaxis in the ﬁx; CnUne'k”X:; ( -z &zun> cre'n®.
direction of propagation pe _

o, Multiplying the first equation byu,e” '™ and the second
IxP=pwUy, equation byp,e '“m adding the two equations and inte-

grating along the depth of the waveguide gives

p .
IyUy=— — a,u, B
pC ; fo {(unpm+ pnum)&xcn—"cn( pm axun"—um axpn)
Su= ——ap FIC K (UnPr Pty e dz
pw’ o 1

In the above equatiornsis the pressure andlis the displace- = En: Jo { - ?pnpm_z' (9,Un)Prm
ment vector. The pressure and the normal component of the p
displacement are continuous across any interface. This may .
be expressed as + pw?UUp  cpe' kn—kmX gz, 3

[p]f=0, [n-u]=0, Since according to Eq1) u,=ik,p,/(pw?), we find
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B1
(4) (km+kn) JO ;pm IxPn dz

:(kn_km)lfoB[U')z( éx(

1(9 (9xPn)
p z xpn

2 dy(Cm)Kmt Crmy dxKkm= 2 AmnCn -
nz m

The details of the above derivation is given in Appendix B. }
P

In the above equatio,, is the coupling matrix given by )gzp”) Pm

Amn=— +d;

B1 B 1 )
(kn+km)J’ ;pm dx(pn)dz+ knf PnPm Pmt ;pnpmgx(k )
0 0

+

dz+ ai(kn— k)X +(k2—k2)a,

1
X dy ;

©)

1 1
— —dy| —3d d dz 8
P) PnPm z(p zpm) xpn} (8)

Ky
Fpnpmo"xh

We would like to transfer all terms involving the range de-
The above equation is not yet in the desired form, as it conrivatives of the modes from inside the integral to the bound-
tains the range derivative of the modes, which is difficult toary term by using integration by parts. The first term can be
compute accurately. In the remainder of this section we willwritten as
use the modal equations and the boundary and interface cons-g
ditions to convert the above equation into one which only’]( az( Iy
contains the local modes and their depth derivatives. 0

— 4
p zPn | Pm

Consider the mode equations for madend modem

1 1 5 12
d ;azpn +;(k _kn)pn:O: (6)

()

1 1 5 12
d ;azpm +;(k _km)pmzo-

The modal equation is obtained by substituting,
=ik,pn/(pw?) into the second equation in Eql). Next
evaluate

B
fo {Pm x[EQ. (6)]—[Eq.(7)]dypntdz.

This gives

[l

1 2 22 E
+p|0nI0m Ax(k?) + (k“—kp) dx p PnPm

pm+ (92

1r9(r9 ))
p z xpn pm

2 2 1 1
+(km_ kn);pm IxPn— 9, ;azpm dxpndz=0.

The fifth term in the above equation can be written as

B1
(km_kn)(km+kn) fo ;pm IxPn dz

bl

E 2 2_ 1,2 E
+ppnpm dx(k?) + (k“—kp) dy p PnPm

pm+ aZ

1
; az(&xpn) Pm

1
- az( _azpm) axpn} dz,
p
or

162 J. Acoust. Soc. Am., Vol. 111, No. 1, Pt. 1, Jan. 2002

ﬁ(i)((? ) +—Fa(£)(a )(9,p,)dz
X p an pm B 0 X p me an -

Similarly, the second and the fifth terms can be written as

B (1
Jo7
0

- d
p &z(ﬂxpn)) Pm dz

B (1
- f az(_azpm) ax( pn)dz
0 p

+ Bl
gl
0

- dz.
i P 3/ Pn)d2(Pm)dz

1

—d,(d
P 2(9xPn)Pm

+ Bl
- f _az(pn)ﬂz(pm)dzv
_ op

and

Fa )(9,Pm)
p «(Pn)(92Pm

Substituting these into E8) gives

B 1

(km+kn)f ;pm ‘9xpndZ

0
“k—koy 1 [°[ - (1)
(Kn—Kn) fo{( i | (0P (2200)

E 2 2 2 E
+ppnpm aX(k )+(k kn)ax p pnpm dZ

+

1 1
Ix ;) (azpn)pm+ ;ax(ﬁzpn) Pm

+

(€)

—30( )(92Pm)
pxpn(zpm

The boundary term in the above equation may be written as

+

{a (E> Jd +Ea J —307 d
X 5 (92Pn)Pm p «(92Pn) Pm p «(Pn)(9,Pm)

+

—{a(la ) -9 )E(a )
- X p an pm x(pn ,D me
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Since the derivative along the interface of a continuous func-

tion f is continuous, we have

[T-Vf]"=0,

This gives

~ ~ odh.
where T=x+ —z.
JX

[axf15=—[ax(h)a(F)]".

Since bothp,, andd,p,/p are continuous across the interface
z=h(x), the above boundary term can be written as

[&x(h)az(

With the help of the wave equation, E¢6), this may be

written as

Substituting this into Eq9) and the result into E(5) yields

Depth (m)

1 1 2 2
ﬁx(h)&z( pn);(&zpm) + &xh;(k - kn) PnPm

+

1 1
pn);(é’zpm) - axh d I_)&zpn) Pm

+

Coupled Mode Solution
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Adiabatic Mode Solution

Y‘v rl 8 1
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[(kz_ I(nkm) PnPm

(km_kn)Amn:[ f:

1\  pnp
—d7Pn azpm]ax ; + - max(kz) dz
1 1,
+‘9xh ;azpn IPmT ;(k
+ .
_knkm)pnpm }el(knkm)x- (10)

The expression for the coupling matrix given by the above
equation is the main result of this paper. It shows the effect
of mode coupling due to contribution from volumetric and
bathymetric variations in the waveguide separately. The first
part of the coupling matrix containing the integral is due to
contribution from volumetric variations in the waveguide
such as variations in sound speed and density as a function of
range. The second part is due to contribution from bathymet-
ric variations in range, i.e., variations in water depth, as is
evident from the presence @éfh.

The coupling matrix has two important properties. First,
it is anti-symmetric, i.e.A,,=—A! . This implies that en-
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FIG. 1. Propagation in an oceanic wedge: The water depth is constant at 200 m for the first 5 km and it slowly decreases to zero in the next 7.5 km resulting
in a wedge angle of 1.55 deg. The top left panel shows the acoustic field due a 25 Hz source placed at 180 m as a function range and depth computed using
the coupled mode model. The bottom left panel shows the acoustic field computed using the adiabatic mode model. The top and bottom panels on the right
show a comparison of the transmission loss as a function of range computed using the PEsolmbléhe coupled mode modétlotted for two receiver

depths.

J. Acoust. Soc.

Am., Vol. 111, No. 1, Pt. 1, Jan. 2002

Ahmad T. Abawi: Energy-conserving one-way coupled mode model 163



Sound Speed Fluctuations The Acoustic Field
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FIG. 2. Propagation through internal waves: The ocean environment consists of a 200 m layer over a bottom half space. The sound speed in the water is
modeled to simulate fluctuations due to internal waves. The top left panel shows the sound speed fluctuations in the water. The top right panel shows the
acoustic field in this environment due to a 100 Hz source placed at 100 m computed using the coupled mode model. The bottom two panels show a comparison
of the transmission between the PE mogsllid), the coupled mode modédiotted, and the adiabatic coupled mode mog#ashed The transmission loss

is computed at a receiver depth of 100 m and for source frequencies of 25 and 100 Hz.

ergy is conserved among modes. Second, it only contains thesulting in a wedge angle of approximately 1.55 deg. To
modes and their depth derivatives. This means that the coapproximate the branch cut integral in the modal representa-
pling matrix can easily be computed using the local modesion of the field, a 1000 m deep false bottom is used. The
and their depth derivatives, which can be obtained from anyaveguide consists of two isovelocity layers: a water layer
normal mode code such agAKeN.™® over a bottom layer. The water sound speed is 1500 m/s and
its density is 1.0 g/crh The bottom sound speed is 1700 m/s
with a density of 1.15 g/cfh The attenuation in the bottom
11l. EXAMPLES . .
is 0.5 dBA. A 25 Hz source is placed at 180 m. These
In this section the one-way coupled mode model devel€nvironmental parameters are chosen to correspond to those
oped in the previous section is applied to two range-used by Coppens and Sanders.
dependent cases. In the first example we use the one-way The acoustic field in the waveguide is computed using
coupled model to compute acoustic propagation an oceanicd. (2) with the modal coefficients;,, obtained from the
wedge wherein range-dependence is due to variations in trgolution of Eq.(4). The first order differential equation for
water depth. In the second example propagation through aifle modal coefficients, Eq4), is solved by using fourth-
ocean with internal waves is computed where the ocean eprder Runge—Kutta integration. To obtain the modes and the
vironment is chosen such that range-dependence is entirepupling matrix as a function of range, the wedge is divided
due to variations in sound speed. The results are comparéato range-independent stair steps. The local modes and the
with those obtained using the parabolic equation'*PE local coupling matrix using Eq(10) are computed in each

method. stair step and updated in the differential equation. The step
A Propagation i q size in the two examples that are presented in this paper is 10
- rropagation in a wedge m. However, a step size of 50 m gives identical results.

The ocean environment in this example is scaled to cor-  The results of the above computation are shown in Fig.
respond to the model tank experiment reported by Coppenk. The top left panel in Fig. 1 shows the acoustic field com-
and Sander¥ The water depth is initially 200 m for the first puted using the one-way coupled mode model described in
5 km and then it slowly decreases to zero in the next 7.5 knthis paper. It can be seen that as the water depth decreases,
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the water modesthere are three water modes in this ex-normal mode solution does not agree with the parabolic
ample cutoff in the form of discrete beams radiating into the equation solution at all. This is more evident at the higher
bottom. The experimental data obtained by Coppens anftequency where the effects of the internal waves, and thus
Sanders show the exact same behavior. Jensen arige mode coupling due to them, is stronger.

Kupermar® used the parabolic equation method to model

the acoustic propagation in this example and found result

identical to those shown in the top left panel of Fig. 1. TheinK'\IOWLEDGNIENTS

interpreted the slow disappearance of the discrete water This work was supported in part by the Office of Naval
modes into the bottom as an indication that energy containeResearch Contract No. N0001496WX30305 and in part by
in a given mode does not couple into the next lower modehe SPAWAR Systems Center Internal Reseafiét) pro-

but couples almost entirely into the continuous mode specgram Contract No. ZU548R8A01. The author would like to
trum. While this effect, which is a consequence of modethank Dr. Bob Odom of the Applied Physics Laboratory at
coupling, is implicitly accounted for in the parabolic equa-the University of Washington for useful discussions and for
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on the right in Fig. 1 show a comparison of the transmission

loss computed using the one-way coupled model and the PEPPENDIX A: THE MODE ORTHOGONALITY

model for two receiver depths. The close agreement betweer—'i‘ELATIONSHIP

the two models clearly demonstrates that the one-way

coupled mode model correctly accounts for mode coupling.  The mode orthogonality equation is obtained by multi-
If the coupling matrix in the one-way coupled mode modelplying the mode equatiof6) by p,, and Eq.(7) by p, sub-
are set equal to zero, the one-way coupled mode model réracting the resulting equations and integrating to give
duces to the adiabatic mode model. The bottom left panel in
Fig. 1 shows the acoustic field computed using the adiabatij
mode solution. Observe that the adiabatic mode solution ©
does not have the correct field behavior near cutoff. While in B 1
the coupled mode solution modes gradually radiate their en- +(kr2n—kﬁ)f —PmPn dz=0.
ergy to the bottom near cutoff, in the adiabatic mode solution 0P

this process occurs abruptly because there is no mechanisfitegrating the first integral by parts results in boundary
for the transfer of energy between modes. terms

dz

(9(1(9 ) J 1(9
Pm zpzpn Pn zpzpm

B 1 B

- pn;azpm

1
B. Propagation in internal waves Pm;l?zpn

0 0

The o%eatntﬁn\grhor;lmen\jvlntthi exar?ple 'Skc;%fb()f the teséince either the mode or its derivative is zero at the bound-
cfases used atthe shallow Water ACous '(_: wor . bcon- aries, there is no contribution from the above interface terms.
sists of 200 m of water over a 400 m, isovelocity bottom.What remains is

The bottom density 1.5 g/chand its sound speed was 1700

m/s. The sound speed profile and the velocity fluctuations B1 B
due to internal waves in the water column are modeled ac-  (Km™ Kn) (KmTkn) 0 ;pmpn dz=0.
cording td®

Form#n,
c(z,r)=c(z)+Ac(zr), 61
where (Km+Kp) fo ;pmpn dz=0,
.0+ 0. < .
c(2)= 1515.0-0.01& - 2<26 and form=n we choose to normalize the modes such that
14901.0+0.25e P+b—1.0) z>26 51
and (kmTkn) fo ;pmpn dz=2K,6mn-
Ac(z,r)= ie*Z’z‘r’cos 2rr
' 25 ' APPENDIX B: DETAILS LEADING TO EQ. (4)

In the aboveb=(z—200)/500 and is measured in km. The We start by multiplying the first equation in E€L) by
top left panel in Fig. 2 shows the sound speed profile for thisi,,, and the second equation in Ed) by p,,, adding the two
example. The top right panel shows the acoustic field in thequations and integrating to get
waveguide for a 100 Hz source place at 30 m. The bottom

two panels in Fig. 2 show a comparison of the adiabatiGk | (p,u,+u,p,)dz

normal mode and the coupled mode solutions with the PE /0

solution for two source frequencies. In both cases the re-

ceiver depth is at 70 m. The coupled mode solution agrees _ JB( _ pnpm_a (ia p
well with PE solution at both frequencies while the adiabatic 0 pcz A pe? O

Pm+ pwzunum) dz.
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Integrating the middle term on the right-hand side by partsvhere the coupling matrixj\,, is defined by Eq(10). For

yields m=n Eg. (B3) becomes,
B [ 1 1 " B P, (1
f dy —Zﬁzpn Pm dz= —26’an Pm 2 3yCnknt €y dxKytCrky, 2(xPn)— +Pp x| —| |dz
0 pC pw 3 0 Y p
Kk p2 +
Bl 1 +c, (dh)—| =o0.
_J' (_z&zpn)azpm dz. " ( X ) P |
0\pw
Since the quantities inside the square brackets are continuod&is can be written as
across the interface, the boundary term is zero. This results in B [p?
2 d,cnkn+cp, dknt annf Jy —ldz
. B B PnPm 1 0
iKn | (PnUmtUspm)dz= - > + _z(azpn)
: ol oot po ard)’
+c, (5Xh)7 =0.
X(&me)-l-pwzunum) dz. (Bl -
It is shown in Appendix C that
Next consider the following term in Eq1), which can be B [p? 1 7+
integrated to give, f ax<—") dz= —axh[—pﬁ , (B4)
5 5 0 p p _
J;) z: (9,Un)Pm dz:[i'unpm]t_ fo (i'un d,Pm)dz. which gives
(B2) 2 d,crkpt+ ¢, dik,=0.
The continuity condition for the normal component of the
displacement can be written as APPENDIX C: DERIVATION OF EQ. (B4)
[n-un] = =[(—2z+dshx)-u,] " =0. The integral across the waveguide can be written as,
This gives, B 2 N 2 B 2
h
S f o’*x<&>dz=J’ ax<& dz+f ax(&)dz.
[z-u, ] =(ayh)u,. 0 P 0 p h™ "\ p
Sincepy, is continuous across the interface, H82) reduces Each one of the above integrals can be written as,
to
2 2 2
ht ht
B. . (B f ax(&)dpaxf (& dz—ah") Pn :
fo Z-(dun)pm dz=[(dh)uspr] = — J;) (z-u, d,pm)dz. 0 p 0 p P lp+
and

Substituting this into Eq(3) and using Eq(B1) gives

B B B (ph B [ p; _[pd
> 5x0nf (unpm+pnum)dz+cnf (Pm dxUn fﬁx — dZ=(7xJ’7 —|dzta(h™)|—| .
n 0 0 p h [
+Upy dyPp)dz+c [ (dh)uypm] F el kn—kmX=0, Substituting for these quantities we find
Next substituting fou,=ik,p,/w?p gives B (p? B[ p2 21+
9 1ot = Pl P g f ax<%)dz=ﬁxj (%)dz—&xh%
0 _

B 1
> [(axcn><kn+km>f ~PnPm A2+ Co(KntKp) _ , o o
n 0P The integral on the right-hand side is a constant which gives

B Pm B 1 B 2 27+
X J;) (&Xpn)7d2+ Cn(axkn) JO ;pnpm dz f é‘x( &) dz=— ﬁxh &
0 p
B
+Cnkn fo &X(;) PnPmdz 1A. D. Pierce, “Extension of the method of normal modes to sound propa-
gation in an almost-stratifield medium,” J. Acoust. Soc. As7, 19-27
KnPoPm| * 2D i v .
+cp| (9gh) ———| eitkn=kmx{ =, (B3) D. M. Milder, “Ray and wave invariants for sofar channel propagation,”
pP B J. Acoust. Soc. Am46, 1259-12631969.
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2 3,CKm+ Crny OyKm= 2 AnrCn s “John A. Fawcett, “A derivation of the differential equations of coupled-
n#m mode propagation,” J. Acoust. Soc. A2, 290—295(1992.
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