Model-oriented ocean tomography using higher frequency,
bottom-mounted hydrophones

James K. Lewis
Scientific Solutions, Inc., 4875 Kikala Road, Kalaheo, Hawaii 96741

Jason Rudzinsky
Applied Physical Sciences, Corp., 2 State Street, Suite 300, New London, Connecticut 06320

Subramaniam Rajan, Peter J. Stein, and Amy Vandiver
Scientific Solutions, Inc., 99 Perimeter Road, Nashua, New Hampshire 03063

The KauaiEx Group
(Received 1 November 2004; revised 22 February 2005; accepted 23 Februayy 2005

A tomographic scheme is presented that ingests ocean acoustic measurements into an ocean model
using data from bottom-mounted hydrophones. The short distances between source-receiver pairs
(1-10 km means arrival times at frequencies of 8—11 kHz are readily detectable and often
distinguishable. The influence of ocean surface motion causes considerable variability in acoustic
travel times. Techniques are presented for measuring travel times and removing the variability due
to surface waves. An assimilation technique is investigated that uses differences in measured and
modeled acoustic travel times to impose corrections on the oceanographic model. Equations relating
travel time differences to oceanographic variables are derived, and techniques are presented for
estimating the acoustic and ocean model error covariance matrices. One test case using a single
source-receiver pair shows that the tomographic information can have an impact on constraining the
solution of the ocean circulation model but can also introduce biases in the predictions. A second test
case utilizes knowledge of a bias in a model-predicted variable to limit grid cells that are impacted
by the tomographic data. In this case, using the tomographic data results in significant improvements
in the model predictions without introducing any biases. 2@05 Acoustical Society of America.

[DOI: 10.1121/1.1893355

PACS numbers: 43.30.RAIT] Pages: 3539-3554

I. INTRODUCTION sound speed perturbatigne., inverse tomographywe uti-
lize a suboptimal assimilation process in which expressions

Variations in the travel times of acoustic signals arerelating the acoustic travel time measurements to ocean vari-
known to be related to the spatial and temporal changes iables are used to ingest the acoustic data into a dynamic
water column temperatures, salinities, and currents. As suclocean model of the region. A spatial covariance matrix
acoustic tomography can provide relevant and important inweights the acoustic observations and spatially distributes
formation on the characteristics of the water coluhMore-  their influence throughout the ocean model domain. The as-
over, the travel time of an acoustic pulse from fixed andsimilation scheme allows the acoustic observation to locally
well-separated source and receiver locations may be consiéhfluence both nowcasts and forecasts of variables in the
ered a more robust measure of spatially averaged oceanoeean mode(e.g., water temperatureOur system is some-
graphic variablege.g., sound speed or temperajutean are  what similar to that which would be implemented using a
point measurements: This results from the fact that the dynamic state space/parameter estimation schéng, a
acoustic parameter is an integral over space, while poinkalman filtering approach except that dynamic updates to
measurements are susceptible to local, small-spatial scatke covariance matrix are not performed with every new set
noise. of acoustic observations and model fields.

In the work presented here, we develop a tomographic  As a test bed for our tomographic studies, we have used
formulation that uses travel time measurements of relativelywo primary assets. The first is Pacific Missile Range Facility
high frequency(~10 kH2z) acoustic transmissions across (PMRF) off the west coast of Kauai, Hawaii. PMRF has 15
fixed, omnidirectional, bottom-mounted acoustic transducershottom-mounted sources that operate in the 8—11-kHz band.
Measured travel times along distinct ray paths are expressé@MRF has an additional 178 bottom-mounted receivers.
as the difference between a reference travel {itheough an  These assets, used by PMRF primarily for localization, com-
environment with a reference sound speed strugtanel a  munications, and safety purposes, provide for the capability
weighted sum of sound speed perturbatiomgh respect to  of transmitting and receiving acoustic data throughout the
the reference sound speed structurea gridded plane con- range. The distances between source-receiver pairs in the
taining the source and receiver. To constrain the solution o$hallow regions of the range are relatively sn{al short as
the sound speed perturbation vector, a spatial covarianck km). The arrival times in the 8—11-kHz band are readily
structure is imposed. Instead of directly inverting for thedetectable. Although the configuration of all hydrophones
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being bottom-mounted is unconventional, such an arrangescean model inputs. Second, the PSAS scheme allows even
ment has tomographic benefits in that there is effectively ngust one source-receiver pair to influence the model solutions

positional uncertainty of the sensors. However, the acoustim a large volume of water surrounding the path of the acous-

signals of greatest use from bottom-mounted systems interatit ray between the source and receiver. This is achieved

with the ocean surface and are, therefore, subject to the instilizing estimates of the spatial error covariance matrices for

fluence of surface waves. As a result, arrival times in thehe acoustic observations and the model variables.

relatively high-frequency range of intere@—11 kH2 can Here we present formulations for quantifying the ob-
have considerable short-term variability due to the surfaceerved arrival times of acoustic rays whose paths have inter-
wave fields, often the dominate source of variability. acted with the ocean surface. Arrival time anomalies are de-

The second asset we employed is the ocean circulatiotermined relative to a monthly sound velocity structure based
model that encompasses the waters of PMRF off the wesin the three-dimensional grid structure of the hydrodynamic
end of the island of KauaiFig. 1). The authors developed model of the PMRF region. We present transforms for deter-
this model for the purposes of obtaining estimates of theanining a model-related travel time anomaly along the path of
spatial and temporal variations of oceanographic parametethe transmitted acoustic ray. It is shown that the differences
that would impact sound speed structure. The hydrodynamibetween the model and observed travel time anomalies can
model is executed on a daily basis, predicting temperaturelse transformed back to adjustments of model-predicted water
(T), salinities(S), and currentgU) at horizontal resolutions temperatures, salinities, and currents.
as high as 900 m and 28 levels in the vertical. The model There are several elements involved with this work.
provides a means of specifying realistic sound speed struckFhese include collection and analysis of arrival times and
ture in space and time under varying tidal, atmospheric, andrrival time anomalies for specific acoustic paths, the details
wave conditions. As such, the model offers a means of estief the numerical ocean model, and the specific construct of
mating acoustic ray arrival times in the ocean surroundinghe PSAS to relate travel time anomalies to model-predicted
PMRF. In addition, the ocean model provides the testing cavariables for assimilation into the ocean model. Each ele-
pability of a method for assimilating acoustic travel times toment will be discussed as well as the details of test cases in
impact model-calculated, S andU using a formulation that which travel times from one source-receiver pair were as-
is an analog of the physical-space statistical analysis systesimilated into the ocean model.

(PSAS data assimilation schenie.

Using our model-oriented assimilation approa@h-
rectly relating acoustic data to the S, andU of a mode]
has some distinct benefits for providing more accurate model A hydrodynamic model, an adaptation of the Blumberg
predictions. First, acoustic data reflect information about and Mellor modef, has been implemented for the waters
volume within the water column and provide a natural meansurrounding Kauai and Niihau, Hawdlkig. 1). This particu-
for obtaining spatially averaged measures of oceanographiar version of the model uses a semi-implicit solution scheme
variables. This is opposed to single point or vertical profilefor solving for the sea surface height fiéldnd a hybrid
observations that are susceptible to small spatial-scale varia-level coordinate system in the vertitab minimize prob-
tions, noise, and uncertainties that may limit their utility aslems that can arise with the original bottom-following sigma-

Il. THE OCEAN MODELS FOR PMRF
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coordinate system when using steep bathymetry and realistic  Atmospheric forcing from the National Centers for En-
temperature and salinity profiles. The bathymédffig. 1) is  vironmental PredictionfNCEP includes momentum, heat,
from the Smith-Sandwell topographyaugmented with and mass fluxes at the air-sea interface. With these, the ocean
higher resolution sounding data obtained from NOAA andmodel can include wind forcing, precipitation minus evapo-
PMRF. A fundamental length scale that characterizes someation, and sensible, evaporative, and radiative heat fluxes.
of the flow-field activity in the region is the baroclinic radius The SWAN model is forced by the NCEP surface wind ve-
of deformation, approximately 20 km. Therefore, the modellocity and wave fields that are generated far from Hawaii and
grid spacing is set at 2—3 km around the open boundaries dhen propagate to the islands. To account for this latter factor,
the domains to approximately 1 km around the shoreline o6WAN ingests NOAAs WaveWatchlll wave spectra infor-
Kauai. In addition, the total horizontal domain is well be- mation along the open boundaries of the model domain.
yond 20 km off the islands. Since waves can have a significant impact on ocean
Observed T-S characteristics were used in specifying theirculation® the ocean circulation model utilized the surface
vertical resolution of the model. We chose the vertical gridwave model results to calculaté) wave-enhanced bottom
structure(28 active levelswith higher resolution within the friction, (2) Stokes drift and the Coriolis wave streg8)
top 100 m and at those depths at which salinity extremesadiation stressesi4) wave-related mixing length at the
exist. This allows advective inflow conditions specified at theocean surface, an) the virtual tangential surface stress.
open boundaries to better maintain the observed T-S struc-
ture within the model domain. B. Model accuracy

We Uti"foed the open boundary condition presented in a5 5 measure of the accuracy of the ocean circulation
Lewis et al,™ specifying the tidal sea level elevations and e predictions and corresponding observations of water
phases along the open boundaries of the model domains. Theynerature were used to calculate an rms model error as a
boundary values were obtained from the Oregon State Unig;nction of depth. During June and July 2003, 175 bathyther-
versn.y tidal model TPXO.8 but “tu_ned" to match observed mographs(BTs) were collected. Model temperatures were
amplitudes and phases for Kauai. The model was forced gherpolated in space and time to these BT data to calculate
the open boundaries with thé,, S, Np, Oy, Ky, andPy the rms error forT. Values of rms errors range fromT
tidal constituents. The model error for the largest tidal con-_q 22 ¢ t0 0.96 °C, which translates to sound speed errors
stituent, theM, tide, is less than 4%, and the errors for the s 1 5_4 g m/s, assumingc/ 9T ~4.947 m/s/°C, where is

other constituents are similar or smaller in magnitude. sound speed. Since salinity does vary significantly with

In addition to the ocean circulation, surface waves We“?:iepth in the Hawaii region, errors in predicting water tem-

modeled using Delit Universitylsof Technology's SWAN erature will be the primary cause of errors in sound speed in
(simulating waves nearshorf!® SWAN is a two- the water column.

dimensional wave spectra model that can perform using a
curvilinear-orthogonal grid. The two-dimensional spectraj|. CONSTRUCTS RELATED TO THE PSAS DATA
ability results in being able to realistically simulate the wide ASSIMILATION

range of wave conditions typically encountered in the

world’s oceans. A curvilinear-orthogonal grid allows SWAN the MODAS fields and the initial conditions of the atmo-

to use the same computational gfahd associated depths Ospheric fields. But there is very little water column data rep-

as that used by the ocean circulation model. The means " : . N
) ) : .resented within the forcing data, especially for forcing fields
allowing the interactions between currents and waves is

greatly facilitated with the use of the same grids by both th%r.e presenting fgturg conditions. Acoustic traye! time !nforma-
. ; ion representi situ data that could be assimilated into the
wave and circulation models.

ocean model to constrain the solutions of the model, and
hopefully increase the accuracy of the model.

Some of the forcing fields contain observations, such as

A. Initialization and forcing fields A. Simulating acoustic paths and travel times

In addition to tides, the model utilizes the Navy’s daily The ocean modéel-S structure can be used to calculate
modular ocean data assimilation systtMODAS) as a daily sound speed profile€SSP using expressions relating, S,
estimate of the three-dimensionatS structure within the and depth to sound speed. This was done to obtain SSPs at a
model domain. This is used to introduce the mesoscale civertical resolution of 5 m and a horizontal resolution of 150
culation field into the model domain. MODAS fields use m. Knowing the precise locations of the PMRF sources and
satellite sea surface temperatures, satellite altimetryreceivers, we used the SSP in the Bellhop acoustic propaga-
bathythermograph data, and results from other models to deéion model to calculate paths of acoustic rays between the
termine theT-S structure within a region. Our ocean model bottom-mounted sources and receivers as a function of time.
employs a scheme that nuddeshe model-predicted tem- We found that in many instances direct-path rays and single-
peratures and salinities to the MODAS temperatures and saurface bounce rays had arrival times very close to one an-
linities. The nudging parametdi* had a value of 0.75 days, other. This would have made it difficult to resolve these ar-
representing a fairly strong nudge. However, tests showedvals in field data due to finite source bandwidth. This was
that the model-predicte® and S often had substantial varia- verified with actual field data, with the true environment of-
tions away from the MODAS - S values as dictated by the ten resulting in acoustic signatures that were even more com-
governing physics within the model. plex than those predicted using model SSPs.
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Our simulations using model results indicated that mul-tic ray would take through the model domaindividual grid
tiple surface bounce acoustic rays were stable in the patbells denoted byi=1,2,3,...N), we can calculate an esti-
they took from source to receiver. Moreover, their arrivalmated arrival time using
times were well separated from the early direct-path and _
single-surface bounce arrivals. As a result, their arrival times tn=2[AL;/(Cm,i+Um,)] )
could be estimated fairly well. This provided a basis in ourwhere the subscripth denotes model-predicted values, ;
analysis of actual acoustic data for delineating times to conis the sound speed in théh model grid celll AL, ; is the
sider for the arrival of rays traveling along specific paths.distance that the ray travels through tite grid cell, and
Moreover, multiple surface bounce rays provide a bettet,; is the component of the three-dimensional current along
sampling of the water column. Due to the drop in signal-to-a particular direction of interest responsible for effectively
noise for higher multiple surface bounce acoustic paths, wécreasing or decreasing the sound speed. The model sound
concentrated on analyzing paths that bounced off the oceaspeed anomaly for each grid is
surface only twice. _

Although acoustic simulation models are fairly accurate, Aci=(Cm,itUm,i)~Cri, (4)
they do have some limitations. For example, our modelingvherecg; is based on referenceand S values.
does not simulate the Doppler impacts of the motion of sur-  Rearranging4), substituting into(3), linearizing using
face waves or surface roughness. However, simulations shoek;>Ac?, and rearranging the result in terms of a travel time
that these factors can be effectively eliminated in the obseranomaly(relative to the exact santg as in the expression
vations by averaging the arrival times over a number offor A7) give

pings that cover many cycles of surface motion. Another N
possible limitation is the error resulting from inaccuracies in Ar (t)=— 2 ALijAci(t) —bAcT (5)
the exact positions and depths of the source, receiver, and " =1 cky ’

where a ray path bounces off the ocean bottom between the . . .
source and receiver. whereN is the number of model grid cells through which the

Our analyses require a reference sound speed structuf@ tr?vgli.] On the Viry nghg\hand l?.'df (5,]2.’ we fh:/:// c rept—
Cr- This was determined using monthly climatologidalS [)ets)e_n € h € Su{nmi'&n as ? r:{“A'Lp/'CS‘ |c;n 0 OC;/AeC ors,
fields for the region shown in Fig. 1. Thusg is a four- €ing the vector of the consta i/Cr,i l€rMS andac

dimensional field with spatial resolution equal to that of thebemg the_t\r/]e;:or otf) the tlan(ta-var?/ng terrm:i(t)l. th del
ocean circulation model and varying monthly. In addition, S W € observed fravel ime anomaly, theé model-
the PSAS assimilation scheme requires reference fieldg for predicted travel time has errors relative to the true value
S and current velocities. Again, the monthly climatological ATre:

T-Sfields were used, while a reference velocity of 0 m/swas A 7= A7+ €pis(t) + e n (1) + ersy(t). (6)

used throughout space and time. . L .
9 P Errors due to the discretization procésspresentingh 7, by

a summation oveN grid cells as opposed to an integral over
a continuum are denoted byps(t). The errors associated
B. Observed travel time anomalies with the linearization approximationck>Ac?) are con-

At a given time, an observed travel timgfor a particu- tained ine(t). Thg errors resuIting from the differences
lar acoustic path can be combined with a reference oceapetween model-predicted sound spéeel, T, S andU) and

arrival timetr, to determine dravel time anomaly the true sound speed are denotedely(t).
The reader should note that we assume that the measure-
Arg=t,—tg. (1) ment error,g,(t), is a random variable that is uncorrelated

. . . ith the model error terms.
The reference travel time is some predetermined standar\g

derived by a computation of the travel time through the ref-
erence environment using a standard ray propagation model
(e.g., Bellhop. D. The tomographic expression

Any means of determining an observed travel time g a40n(5) must be transformed to relate travel time
anomaly will include some measurement error, and we réPanomalies to ocean model variablgs S, and U). We ex-

resent the errors associated with an observatiog, (@} press the sound speed in the ocean as a sum of a reference

ATrue=ATrtE, (2)  sound speed and a sound speed perturbation:
Jc Jc
C. Model-predicted travel time anomalies c=cCrt ﬁATﬂL a_SAS+ U=cg+ éc. (7)

We assume that the path of an acoustic ray of interesgoy |ocal ocean temperatures and salinities and small tem-

only deviates slightly from the path resulting from the refer- peratyre and salinity variations, we can approximate the two
ence sound speed structueg,, at any time. Thus, temporal patial derivatives as

changes in travel time are primarily associated with changes
in propagation speed along the reference medium (hgn
“frozen ray” approximation. If we know the path an acous-

Jc Jc
&—TAT%4.947AT= aAT, ﬁ—SAS% 1.34AS= BAS,
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where « has units of m/s/°C an@ has units of m/s/ppt. We xA=xF+ K (zg— HxF). (10)
note thata and B are only gross approximations t/dT
anddc/dS, but their use is required to maintain the linearity
of the set of expressions used in the assimilation process.
If the ocean model provides a reasonable first-guess

As mentioned abovezzg— Hx" is the measurement residual,
the difference between the observation and the forecasted
0\fariable.K is the residualKalman gain matrix:

T, S andU, we can rearrang€) to give K=PgHT(HPgHT+R) 1,
Aci=aAT+BAS+U 8 Pe is the spatial covariance of errors in the forecast, Rris
for every grid cell in the ocean model. We U to trans- the spatlal covariance of errors in the_ observations. The for-
form (5)- mulations for these error matrices will be presented in the
following section. But it is readily seen that, #=>HPgHT,
A7y=bAv’ (9 the Kalman gairk approaches zero®=x". Also, the Kal-
where now man gain distributes the measurement residual throughout
) ) 5 the forecast model domain. The mati# can have values
b=[—-AL;/cg; —AlLjalcg; —ALyBIlcgy - for each grid cell, and, thu&, will have a value for each grid

cell, even for just one source-receiver pair. This is a signifi-

cant advantage over inversion tomography where the covari-

and theAv vector is ance matrix tends to be limited to just the region being
-~ acoustically illuminated. Typically, corrections based on ob-

Av=[Uy ATy AS; - Uy ATy ASy]. servations are assigned mostly to regions closest to the ob-
Each of the parameters fv is the model-predicted variable servations and areas where the forecast model error is the
relative to the reference value, all of which are known. Es-highest.
sentially,(9) is our tomographic relationship, relating acous- Note thatH is used when determining and during the
tic information toT, S andU. assimilation process expressedi). CalculatingK is per-

We let the total number of rays present in any sePof formed prior to the assimilation process. Thus, even though
source-receiver transects be We definez(t) as the column  we could use model-predictélland S to obtain better esti-
vector of theM travel time anomaly measurement$+z’'s)  mates forgc/JT anddc/dS when employing10), we do not
at timet. We define the matriX! as that whose rows are the have these values when calculatitg This is the reason we
aboveb. Since each ray path may not go through the samemploy the gross approximations 6€/9T=« and dc/dS
number of grid cellsN, the number of columns iAl willbe =g, to makeH consistent between the process of calculat-
three times the maximum of thés (N,,), and there can be ing K and then later usingL0).

a number of zero entries iH. Finally, we definex as the

3XNpmax column vector with theAv for each grid cell | SPECIFYING THE ERROR COVARIANCE

—ALy/cky —Alyalchy —ALyBIci ]

through which a ray path travels. MATRICES
We can relate all these matrices by theeasurement ) o ) -
matrix residual equation For this prel|m|.nary study(lO) was S|r.an|f|'ed by as-
suming that travel time anomalies were primarily a result of
z(t) —Hx(t) =residual. the differences between predicted and ocean water tempera-

The goal of the data assimilation method is to minimize thelures. In this casex” and x* are column vectors of fore-
residual. We note that, if the acoustic model grid is not co-asted and analysis temperatures relative to the monthly ref-
incident with the ocean model grid, the measurement matrience temp_eratureX!::Tmodel_ Treferenceanq XA =T analysis

H must be premultiplied by an interpolation matrix that maps— T reference SINCET reference@PPEArs on both sides (o), we

the acoustic model grid onto the ocean model grid. In thisS€€ that the expression reduces to

study, the two grids coincide. T anaysis= Tmodert K (Zr— HxF). (12)
The rows of theH matrix now consist of
b=[—ALja/ck; —ALyalck; -+ —ALyalch ]

for each ray path. As beforeg is the column vector of
“observed” travel time anomalies. Thus, K is properly
determined, all the terms on the rhs(dfl) are defined, and
we can solve foiT ynaysis

E. Assimilation of tomographic information into the
ocean model

In our assimilation formulation, we define ocean param
eters throughout the ocean model grid space, a§, andx*
as vectors representing threle state theforecasted estimate
prior to assimilation, and thanalysis estimatéafter assimi-
lation), respectively. The vectors, x7, andx* are time de-  A. Calculating the covariance functions

pendent, and the three-dimensioffalS, andU fields form The modification of the model variables results from the

our state vector. o .
The basic expression we will use to determine the analygppIICatlon of(10). As such, the magnitude of the change of

sis (updatedl field combines the forecast estimafewith the a model vgrlable Is critically depender_ﬂ on the error covart-
. ) . ance matrices. The model error covariance matrix is defined

acoustic-related measuremerzg (the Arg’s) using the

model-related measurement matkixas follows(the PSAS

formulation:® Pe=E[(x—x")(x—x")T].
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Of the various elements d%., the erg, errors(differences Pe=E[(Tero— El Terrod) (Terror— E[ Terrod) 1 (13
between the model and the true oc@a®, andU) will likely . L . .
be the most dominant. Typical values of sound speed in wa- Anther con3|d§rat|on 'S the Igngth of the time series
ter and the magnitude of the rms errors determined fronPVer which the spatial covariance is calculated. Commonly,

model/data comparisori$ec. Il B) indicate that the linear- ::e s?]aUaI c;)rtrhelafcl(?[n strlu;:_:jure Yﬁ:'es \t'\;:th factors suqh as
ization error,e |y , IS negligible: the value oniﬁi will be at € phase of the internal tides. Thus, the error covariance

least four to five orders of magnitude larger thlaoiz, even matrices should be recalculated on a fairly regular basis. The

with substantial errors in salinity. Numerical simulations Sug_t!m”e spﬁm tover (\j".'thlcm'\("jODFL or r-:—.efrr]‘”teXtelmtj. should palr_-

gest that discretizing the integral on the gridding scales useEia y retiect conditions during which travel imeé anomalies

by the hydrodynamic model results és=0.1ms for rays are to be assimilated. If the fortnightly phase of the internal
IS ide is the primary factor controlling spatial structure, then a

that interact with the surface one to three times. Thus, W%. . 34 b iate. In this stud
ignore ep;s and concentrate on developing a reasonable ap-'me %erles? ¢ aysf Thay egplproprlq €. n 'Sts. uay, We3
proximation forersy. consider estimates of the model covariance matrix using

The most accurate method of calculating the model erropays'l'r?fe r:)obusrcle};vczja?itgﬁ error covariance matrix is defined as
covariance matri¥g is to use many realizations in space and
time of model-predicted variables along with corresponding R=E[(e,+E[e,])(e,+E[e,])"].
observations. Typically, such observations are nonexis’[entl_here are two components of the measurement error vector
One approach to deal with the lack of model-data compari- The first component is diven b
sons is to estimatBg by the spatial covariance from the time N P 9 y

sequence of the model-predicted variable over a set of 1
(x,y,z) locations?® otz—bwm,
Pe=E[(TmopeL ~ E[ TmopeL ) (Tvoper wherebw is the bandwidth of the signabv=2wAf) and
—E[Twooe ) T]- (12) SNR is the signal-to-noise ratio. In our experiment per-

formed at PMRF during June—July 2003, we had a band-
It is easily shown that the model covariance equals the surwidth of 3000 Hz. Assuming a signal-to-noise ratio of 10 dB,
of the model error covariance plus the covariance of the trughis error is around 3Zs.
state of the ocean. ThuBg given by (12) always results in The second component ef is due to the fluctuations in
overestimating the error covariance. As a result, the rate ahe water column temperature and salinity, the roughness of
spatial decorrelation of the errors of a variable can be undetthe ocean surface, and uncertainties in the bathymetry. One
estimated. Therefore we would expect the observations to b&pproach to estimate this error is from the acoustic data it-
more spatially limited in their impact on the analysis fields, self. This is done by estimating the standard deviation of the
which in itself is not an adverse consequence but may nadrrivals for a set of pings between a source-receiver pair.
make full use of the observations. This information is presented in the following section.

A second method involves estimating the error covari-

ance matrixPg utilizing scaled, time histories of model-
predicted temperatures. In the first step of this method, &. Implementation
time series of errors is specified for a given temperature

In implementing our data assimilation scheme, we lim-
T(X,y,z,1t) as

ited the model grid cells impacted by acoustic observations
Tenol X,Y,2,0) =T(X,Y,2,t+24 hourg—T(x,y,zt). to those with?n 20 km_ of any model grid pell through which
ray paths being considered traveled. This reduced the num-
Using the 24-h offset, the “errors” are simply a result of ber of covariance functions that had to be calculated,,f,
day-to-day variability in atmospheric forcing, the phase ofis the number of grid cells within the 20-km range, then
the tides, wave conditions, and the MODAS T-S fields. FromPgHT for the p ray is anL . column vector. There are 12
this we can calculata days worth of estimates of errofr ~ monthly column vectorsag for a given grid cell varies by
our study, errors at hourly intervalfr the ocean variabl€. month for the any ray path. All the elements were calculated
The second step is the scaling of the erfbgs,,. This scal- and stored in a database. Similarly, all terms in H-H"
ing process relies on the existence of model predictions anchatrix are known, and each monthly matrix was calculated.
corresponding observations with which to calculate an rm&he monthlyHPHT matrices were inverted and multiplied
model error. In our case, 175 bathythermographs were usedty PeHT to give 12 L X Pmax arrays, whereP ., is the
to calculate an rms error fofF as a function of depth. Thus, number of ray paths being consideréc., there areP .,
eachTqo(X,Y,t) for a specificz can be scalefkach value of arrival time anomalies
TermolX,Y,2,t) increased or decreasedo that the model- Thus, the analysis and assimilation software only re-
model rms errors match the observed-model rms errors. Thiguires the monthly databases @) the PeHT(HPHT) 2
scaling allows us to produce estimates between the modelements,(2) the reference temperatures along the acoustic
and the true state of the ocean that are realistic in that the rnmaths being consideredifor Av in (9)], and (3) the
model-model differences match rms model-data differences- aA LN/czRN values[for b in (9)].
We use the scaled time histories to calculate the appropriate As in any assimilation scheme, there are additional fac-
spatial covariance matrix using tors that have been incorporated in our process. First, we
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assumed that the MODAS temperature fidlgy,(X,y,z), re-  are two sources of error in the estimation of travel time if we
flects a norm for thel ,naysi{X,y,2) field. We used the 175 use the above representation. First, the sound channel is dis-
bathythermographSec. 11 B to calculate relative ranges for persive, and we cannot expect the transmitted signal shape to
each vertical level of the ocean moddRa(z)=T(z)max  remain unchanged as it propagates through the channel. The
—T(2Dmin- We then limited the replacement of the elements insecond error is because we have not correctly modeled phase
the Toqe field to those grid cells in which the assimilation changes that occur during propagati@due to caustics or
process resulted ife) a water temperature within the range boundary reflections Simulations show that the errors in

of Tu(x,y,z)xRa(z)/2, (b) a water temperature closer to arrival time estimates due to both these causes are of the
Tum(X,y,2) —Ra(z)/2 whenT oqe< Tm(X,Y,2) —R&(2)/2, or  order of tens of microseconds, which is less than the error in
(c) a water temperature closer Tg,(X,y,z) + Ra(z)/2 when  arrival time estimates as a result of the finite source band-
Tmoder Tm(X,Y,2) + Ra(z)/2. These limitations were found width. Thus, these errors can be ignored for our application.
to aid in preventing the assimilation process from making  Two candidate transmit signals were tested: a linear
model-predicted temperatures that were already too coldhirp and a 511-digitn-sequence. In areas where the acous-
(warm) from being made even coldéwarme). This is not  tic signal interacts with waves on the ocean surface, there
to say that other forcings cannot result in model-predicteccan be a Doppler shift that compresses or elongates the sig-
temperatures that drift away from thg,(x,y,z) = Ra(z)/2 nal envelope, depending on the direction of motion of the
field. Only the assimilation process is constrained to alter th@cean surface relative to the incident acoustic energy.
model-predicted temperatures toward a range about th®latched filter output of this Doppler-shifted signal gives rise

MODAS temperatures. to errors in(a) estimating the arrival time an@) the ampli-
tude of the matched filter output of each arrival. Analysis of
V. THE ACOUSTIC DATA the errors in estimating arrival times showed that the errors

in the phase-coded sequence were less than that of the chirp
Each signal transmitted from a PMRF source is acquiredignal. However, the amplitude of the matched filter output
by an acoustic data acquisition systehDAS) at designated remained practically unaltered in the case of chirp signal,
receivers. The transmitted signal is then replica-correlategihile in the phase-coded sequence it is reduced substantially.
with the received signal. The received signal is modeled as #hjs resulted in greater difficulties in detecting a phase-

sum of ray arrivals given by coded signal in the presence of background noise. Since av-
eraging can eliminate the error in the arrival time due to
r(t)=2> ans(t—r,), surface motion, the transmissions used in this study were
n

chirp signals with a center frequency of 9.5 kHz and a band-
wherea, is the weight associated with each arrivg(t) is  width of 3 kHz.
the transmitted signal, and, is the delay associated with To improve the signal-to-noise ratio and to reduce the
each arrival. When correlated with the transmitted signal, thémpact of surface motion, we averaged over a number of
output will have peaks at times corresponding to the travehcoustic transmissions. Under normal circumstances, it
times of eigenrays between the source and receiver. Thergould have been appropriate to send a large train of acoustic
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pulses and perform an average over this train of pulses. The matched filter outputs for a varying number of
However, this was not possible because of “cross talk” be-transmissions are shown in Fig. 2. The top panel shows the
tween the transmitter and receivers at PMRF. Instead, weutput using only one transmission. The output using the
transmitted a sequence of 12 acoustic transmissions that coaverage of 12 transmissions is shown in the middle panel,
sisted of four groups separated by 8 s. Each acoustic tranand the output using the average of 36 transmissions is
mission had a duration of 0.1 s, with an interval of 0.4 sshown in the lower panel. We see that a considerable en-
between each transmission. The number of pulses in a groumncement of the signal-to-noise ratio is achieved by averag-
was restricted to three transmissions to avoid interferencieng over 36 transmissions.

due to the cross talk. The distance to the nearest receiver set The arrival structure in Fig. 2 consists of one stronger
this limitation. The maximum distance between the sourcearrival followed by three weaker arrivals. An eigentay
and selected receivers dictated the 8-s separation betweanalysis for this particular source/receiver pair was per-
groups of transmissions. The string of 12 transmissions wafrmed using a sound speed field for the region obtained
repeated three times with an interval of about 30 s. Thdrom the ocean model. Based on this analysis, the earliest
length of each train of pulsg&e., about 28 sand the time group of arrivals consists of rays that travel from source to
interval between each train were selected on the basis of theceiver without interacting with either the ocean surface or
requirements of the data acquisition system. bottom and others that include a ray that interacts with the
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surface only once and rays that hug the bottom and havsurface bounce acoustic patttle third and fourth arrivajs
repeated interactions with the bottom. The arrival times of  For the initial development and testing of this technol-
rays that have only interactions with the bottom carry little ogy, we worked with just one ray path. The ADAS was used
information about the bulk of the water column. This plusto collect travel time observations for a double-surface
the problem of delineating individual ray arrival times within bounce ray path at PMRF just offshore of the 90-m isobath
the first group of arrivals lead us to neglect these arrivals if(Fig. 3). The ray path was between a bottom-mounted source
our tomography analysis. (D9) some 3.5 km from a bottom-mounted receivBx2).

The subsequent three arrivals in Fig. 2 correspond-rom an eigenray analysis performed using a mean sound
to rays that have two, three, and four surface bouncesspeed structure for the area, the arrival time of a ray with two
respectively. As mentioned before, we concentrated on anaurface bounces is about 2.3 s. This is used to readily iden-
lyzing the path that bounced off the ocean surface only twiceify the arrival time of the two-surface bounce ray in the
due to the drop in signal-to-noise for higher multiple ADAS data(Fig. 2. An enhanced viewnot shown of the
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FIG. 6. Hourly temperature profiles
for 3 July 2003 at the thermistor site
shown in Fig. 3: observedtop) and
predicted, no assimilationbottom).
The MODAS temperature profiles for
that date and location are also shown
(solid red, along with the observed
ranges of temperatureghorizontal
solid red determined from the 178
BTs, centered on the MODAS tem-
peratures.

matched filter output corresponding to the arrival time forof the cluster of peaksgarrival timeg was used to estimate
this ray indicates multiple peaks that are likely the result ofthe error covariance matrix.

the roughness of the ocean surface and the ocean bottom. In The data were used to estimate #eerror term for the
order to determine the arrival time of a particular ray, wetwo-surface bounce ray between D9 and D12. The standard
performed cluster analysis of the arrival times and their reladeviations of the all arrivals for sets of pings covering a
tive amplitudes of all arrivals that represented the acoustid80-h period are shown in Fig. 4. As can be seen, there is a
ray of interest. The centroid of the cluster of peaks was usedignificant amount of variability in the standard deviation,
as the estimate of the arrival time. In addition, the variancevarying from 0.5 to 6 ms. The mean was 1.8 ms. We note
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that thise, error is orders of magnitude greater than the such, the thermistor data provide a means of assessing the
error due to noise in the signal and the limited bandwidth ofimpact of assimilating the D9-D12 arrival time anomaly data
the signal(32 us). Thus, we can negleet; . into the ocean circulation model.
During 30 June—3 July 2003, the ADAS was used to
generate 8—11-kHz chirgénear FM sweepwith a duration
VI. DATA ASSIMILATION TEST CASE, JULY 2003 of 100 ms from D9. The signal was transmitted 36 times over

During an Office of Naval Research experim@nat @ 2.5-min period every half hour. Data were collected from
PMRF during June-July 2003, a series of thermistor stringgout 8:00 AM to about 5:00 PM local tim@800 GMT to
were placed along the 90-m isobath just shoreward of th€300 GMT) for all 4 days. Output of each transmission in the
D9-D12 source-receiver pair. The distance between the D@hree chirp trains was run through the matched filter process,
D12 ray path and the thermistor arrays waf.5 km. As and then the 36-transmission average was calculated. In

A4

FIG. 8. Observed travel time anoma-

Model, Assimilating with lies (zg) and model-predicted travel

PF Based on Equation (13) time anomaliesKix") _using(13). Each
dot represents one time stéf00 9 of

the numerical ocean model. The varia-
tions of Hx"™ with K=0 (no assimila-
tion) are shown by the bottom curve.

Arrival Time Anomalies (ms)
&
T

S~

Model, No Assimilation

v I T

9 1 1 1 1 1 1 1 1 1 1 1
7 8 9 10 1" 12 13 14 15 16 17 18 19
Hawaii Standard Time (hrs), 30 June 2003

J. Acoust. Soc. Am., Vol. 117, No. 6, June 2005 Lewis et al.: Model-oriented ocean tomography 3549



10 Model Temperature Profiles
Assimilation All Levels
Hourly Intervals, Julian Day 184

20

30

40 [

Water Depth (m)

MODAS Temperatures

60 [ Plus Observed Range

70

80

| |

22 23 24 25 26 27 28
Model Water Temperature (°C), Thermistor String 3

FIG. 9. Model-predicted hourly temperature profiles for 3 July 2003 at the thermistor site shown in Fig. 3. The MODAS temperature profiles for idat date a
location are also showfsolid red, along with the observed ranges of temperattesizontal solid reg determined from the 178 BTs, centered on the
MODAS temperatures.

cases where multiple peaks resulted in an ambiguity in deeach time step. This would still allow up to a 5-6 °C tem-
termining the arrival time, the averaged matched filter outpuperature change over a 6-h period, a not-uncommon signa-
was low-pass filtered. ture of internal tides around the Hawaiian Islands.

After determining all the arrival times of the double sur- The ocean model was first executed without any acous-
face bounce path between D9 and D12, travel time anomajc data assimilation, and the model-predicted water tempera-
lies were calculated for assimilation into the ocean modely, es were compared to the thermistor data. A comparison of
These are shown in Fig. 5. There are distinct longer-tefmye i gel-predicted and observed water temperatures at the
variations in arrival time anomalies that are likely a result Ofsite shown in Fig. 3 on 3 July 2003 is shown in Fig. 6. There

tidal fluctuations and/or surface heating and cooling. But tht?s a distinct bias in the surface mixed layéobserved

observed travel time anomalies also have large hour-to-hoyr o .
L . L#[emperatureSZG O where the model-predicted tempera-
variations. These short-term fluctuations could be the resu

of signal processingi.e., the “noise” seen in the curves in tures are too warm. For the cooler waters at depth, the scatter

Fig. 2) or actual ocean processes that alter the sound speed iéfconside:able, with the model E)redictions being as much as
the water column. When translated to geophysical fluid dy-8Pout 0.8°C too warm and 2.2°C too cool.
namics, the short-term variations mean short space scale phg- Tests of assimilation parameters
nomena: e.g., solitons. Even if these fluctuations are not a P
We used e,=1.86ms, or R=(1.86x10 °s)*=3.46

result of signal processing, our ocean model does not have - i i
the horizontal resolutioritens of metersthat would be re- <10~ °s’. For estimating:, we have put forth two possible

quired to reproduce such short space scale phenomena. Tethods: those in Eq§12) and(13). As a measure of quan-
mitigate the impact of such fluctuations in the arrival timetifying the magnitude of the impact of assimilating the
anomaliesiwhich would generate spurious gravity waves in acoustic information for differer:'s, we compared the two
the ocean modglwe limit the magnitude of any changes to quantities of the measurement residugl,and Hx". Recall
the model-predicted temperatures tob8.7xX 10 4°C/s for  thatzg is the observed travel time anomaRig. 5 andHx"
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is the corresponding travel time anomaly predicted by théhours, with a strong negative trend after 15:30 hours. This is

ocean model. If the effect of the assimilation is significant,opposite to the trend ofy.

thenHx"— zg over time. Based on the results shown in Figs. 7 and 8, we use Eq.
We first usedPr as defined in Eq(12) with the time  (13) for defining Pe for our assimilation exercises. In doing

series used to calculaf@: being 72 h of temperatures for S0, we calculated the value bPH" for the single acoustic

each model grid cell. An example of the variationsHof®  path between D9 and D12. This value was KD °s”.

andzg is shown in Fig. 7. Each dot in Fig. 7 represents oneThus,HPeHT was about twice that oR (3.46x 107 °<”).

time step of the ocean model00 9. When the assimilation

process starteddx" was approximately twice as large &s,

with about a 4-ms difference between the two. Within three. |mpact of assimilation process, 3 July 2003

time steps(and, thus, three new sets ®f.ysisingested by

the mode), Hx™ was reproducingg quite well. This good

reproduction continued for the next 3—4 h. By about 12:4

hours local time, the difference betwesnandHx" began to

increase, reaching a maximum of the order af &s by

Simulations were performed with the assimilation pro-
5cedure executed whenever there were any arrival time
anomaly data within 0.5 h of the model simulation time. The

P matrix was determined usind3) with 3 days of hourly
18:00 hours local time model results. In Fig. 9 we show the model tempergturgs at
' i ) . . . the same thermistor string whose data are shown in Fig. 6

A similar test was condgctgd usilig as defined "(13)’_ . (top panel. We see that the assimilation process resulted in

a_md _th.e. results are shown in Fig. 8. As blefore, the as,s'm'laéooler surface waters, but the warmer surface bias still exists.
tion initially resulted in a good reproduction @k. But, in j5 anparent that the assimilation lowered the subsurface
this case, the good reprpductlon Igsted longer, for about 6.-Rater temperatures alsobserved temperatureg6 °C),
h. E’y 15:00 hours local time, the differences betweg@and  \ith the maximum overprediction in deeper waters being
Hx"™ became larger but were noticeably smaller than thosesqyced to+0.5 °C. However, the model temperatures in the
shown in Fig. 7. By 18:00 hours, the differences were of thqower part of the water column were lowered too much, with
order of 2 ms. underpredictions being now as large-a8.3 °C.

We note that, as the differences betwegrand Hx" in The overall impact of the data assimilation is better de-
Figs. 7 and 8 increaséjx" is characterized by higher fre- picted in Fig. 10. In general, the temperatures of the water
quency oscillations. This type of variability commonly indi- column were loweredpoints below the diagonal linewith
cates that other model forcing.g., tidal, atmospheric, ejc. the cooling being larger in magnitude as the depth increased
is substantial enough to counter the adjustments resultingoward the left-hand side of Fig. LOWe also see that the
from assimilating the observed travel time anomalies, thugissimilation process resulted in some increasing tempera-
explaining the increasing differences betwegnand Hx™.  tures(points above the diagonalurther down in the water
The bottom curves in Figs. 7 and 8 shd#x™ with no as-  column. The assimilation process induced relatively modest
similation. It is obvious that one of the other forcings is temperature changes for the 24-h period of 3 July 2003,
pushing Hx"™ to become more negative after about 14:00ranging from+0.5 to —0.8 °C.
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FIG. 11. Model-predicted hourly temperature profiles for 3 July 2003 at the thermistor site shown in Fig. 3. The MODAS temperature profiles for that date
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Comparing Figs. 6 and 9, we would conclude that as-bottom-mounted sources and receivers. In calculating an ob-
similating the one ray path had both positive and negativeserved arrival time, we attempted to eliminate the impacts of
impacts. On the positive side, the acoustic information reDoppler shifts and scattering at the ocean surface by averag-
duced the number of occurrences in which the modeling over a number of pings. The reference arrival time be-
predicted water temperatures were too warm. However, thewveen a source-receiver pair was calculated using an acoustic
assimilation failed to eliminate the warm bias of the m0d9|propagation model based on mode|_predicted SSPs, the
predictions near the ocean surface and actually accentuat@fecified locations and depths of the source and receiver, and
the cool bias of the model in the lower parts of the watering ayailable bathymetry between the source and receiver.

column. The arrival time anomalies from only one acoustic path

The warm bias of the model near the ocean _surfa(_:e WaRere used in a test of this technology at PMRF in Hawaii.
a persistent feature for 30 June—3 July 2003. Using this faCWhen assimilating over all model grid cells, the acoustic
we modified our process such that assimilation occurred onIY ’

. Hformation helped in reducing the number of occurrences in
over the top 40 m of the ocean model. No adjustments based, . .
which the model-predicted water temperatures were too

on the acoustic data were made below 40 m. The resultin% . :
. L arm. However, the assimilation technology for this case
temperature profiles are shown in Fig. 11, and these can he

compared to the profiles in Figs. 6 and 9. We see that modelntroduced a distinct cool bias in the lower levels of the

predicted near-surface temperatures better reflect the OM\[ater column(Fig. 9. A second test used thg fact that the
served temperatures, both in magnitude and variability. Thgwodel near-surface temperatures at the location of the obser-
lower layers of the water column were still too cool, but the vVations were consistently too warm, so assimilation occurred

assimilation process did not accentuate this bias in this tesPly Over the top 40 m of the water column. In this case,
knowledge of the model bias allowed the technology to re-

VIl. SUMMARY AND CONCLUSIONS sult in better near-surface predictions without enhancing the
We have presented a model-oriented acoustic inversiohias in the lower layers of the water column.
and assimilation technique for arrival time anomalies from  In the first test, the changes in the character of the pro-
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files (Figs. 6 and 9 are readily explained by the values cal- time tg and theAL'’s (distances a ray travels through various
culated for the Kalman gain matrik. When dealing with  model grid cell$, both determined from the results of the
only one ray path, there is a single element of the marix acoustic propagation modeling. Bathymetric survey technol-
for each model grid cell. This is multiplied times the corre- ogy typically results in errors in depths of the order of
sponding element afz — Hx" (which itself will be a scalar meters. And errors in source, receiver, and bottom-bounce
for a single ray path Thus, a larger value of the element of depths may or may not be cumulative. However, the latitudes
K for a grid cell results in a greater modification in the and longitudes of hydrophones at degf9+ m) obtained
model-predicted water temperature in that grid cell duringfrom a ship rolling on the open ocean are likely a greater
the PSAS assimilation process. An analysi&afhowed that source of errors fotg and theAL'’s. It would not be unrea-
larger values were associated with water depths from 80 tsonable to expect such errors to be as large as tens of meters.
300 m. As a result, the assimilation of travel time anomaliePerhaps having multiple paths over numerous transects may
had the greatest impact on the lower levels of the model gridnitigate such errors, but this has yet to be determined.
cells. This differential impact is quite evident when we con-
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