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The virtual source technique, which is based on the boundary integral method, provides the means
to impose boundary conditions on arbitrarily shaped boundaries by replacing them by a collection
of sources whose amplitudes are determined from the boundary conditions. In this paper the virtual
source technique is used to model propagation of waves in a range-dependent ocean overlying an
elastic bottom with arbitrarily shaped ocean-bottom interface. The method is applied to propagation
in an elastic Pekeris waveguide, an acoustic wedge, and an elastic wedge. In the case of propagation
in an elastic Pekeris waveguide, the results agree very well with those obtained from the
wavenumber integral technique, as they do with the solution of the parabolic equation �PE�
technique in the case of propagation in an acoustic wedge. The results for propagation in an elastic
wedge qualitatively agree with those obtained from an elastic PE solution. © 2007 Acoustical
Society of America. �DOI: 10.1121/1.2431336�

PACS number�s�: 43.30.Ma �AIT� Pages: 1374–1382
I. INTRODUCTION

An exact solution of the wave equation is possible only
for a range-independent waveguide with plane parallel
boundaries. In this case the wave equation is separable in a
curvilinear coordinate system and the solution can be repre-
sented rigorously by a wavenumber integral. This solution
can also be effectively expressed as a sum of propagating
normal modes and a spectral integral representing the con-
tinuum. One of the distinct features of propagation in a
range-independent waveguide is that, a mode, once excited,
propagates without coupling with other modes. This forms
the basis of the normal mode technique for the solution of
the wave equation in a range-independent waveguide. The
separability of the wave equation in a range-independent
waveguide lends itself to solutions by a number of other
techniques, most notably the wavenumber integration, the
normal mode method, and the parabolic equation �PE�
method.1 The normal mode and the wavenumber integration
techniques can also rigorously treat propagation of waves in
an ocean overlying an elastic bottom.

In a range-dependent ocean environment, where the wa-
ter depth and/or the ocean parameters vary with range, the
wave equation is generally not separable. In this case the
description of the solution in terms of previously uncoupled
modes introduces mode coupling, as was shown by the
coupled mode theory developed by Pierce2 and Milder.3 If
this coupling is ignored, an adiabatic mode solution is ob-
tained, which is accurate for gently varying water depth.
However, adiabatic mode theory is unable to describe the
transition of modes from trapped, where they are convention-
ally defined, through cutoff to the leaky state. Since the origi-
nal work of Pierce and Milder a number of authors have
contributed to this technique.4–9 The technique is essentially
based on expressing the field in a range-dependent wave-
guide in terms of local modes with range-dependent mode

amplitudes. The application of the continuity of pressure and
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the normal component of particle velocity allows a partial
separation of the depth and range variables and yields a sys-
tem of coupled differential equations for the mode ampli-
tudes. However, recent advances in the parabolic equation
technique10,11 have made it the method of choice for model-
ing propagation in a range-dependent ocean. The parabolic
equation technique provides a one-way solution to the wave
equation by factoring the range operator into outgoing and
incoming operators and ignoring the factor, which contains
the incoming operator. While this factorization is exact in a
range-independent waveguide, it is an approximation in a
range-dependent waveguide and only valid for small bottom
slopes.

In most ocean acoustic applications the ocean bottom is
modeled as a fluid. Modeling the ocean bottom as an elastic
medium presents a number of problems in range-dependent
modeling. In the case of the parabolic equation, there is not a
clear choice of the dependent variable for which a parabolic
equation can be derived. For some choices, the range opera-
tor cannot be factored and for some other choices the vari-
ables are not continuous across the interfaces, which causes
numerical difficulties. Similarly, even though coupled mode
solutions for a fluid overlying an elastic bottom have been
formulated,12,13 computation of modes in the vicinity of the
region where they transition from trapped to leaky presents
numerical difficulties. These difficulties arise mainly because
there is no obvious way to keep track of a mode’s identity as
it goes through cutoff, resulting in misinterpreting the ex-
change of energy between a set of modes and causing dis-
continuities to appear in the values of the computed field
quantities.

In this paper we use the method of virtual sources to
compute propagation in a range-dependent waveguide. This
method has widely been used in target scattering computa-
tions, particularly when the target is located in a
waveguide,14–17 but its use in modeling propagation in a

18
waveguide is relatively recent. The method is based on
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modeling a boundary or an interface by a collection of
sources with unknown complex amplitudes. The functions
representing the sources must satisfy the wave equation and
the radiation condition in the far field. The amplitudes of the
sources are determined in a manner by which the field pro-
duced by them and the incident field satisfy all the required
boundary and interface conditions. This, in principle, pro-
vides an exact solution of the wave equation in a waveguide
of arbitrary cross section. The accuracy of the solution is a
function of the number of sources, and in most cases the use
of five to ten sources per wavelength produces sufficiently
accurate results. The sources are usually placed a fraction of
a wavelength from a contour following the boundary. The
formulation presented in this paper is specific to a waveguide
composed of an isovelocity water layer over an acoustic or
elastic half-space bottom. However, the water depth can be
an arbitrary function of range. The case of a waveguide with
a variable sound speed profile overlying a bottom composed
of multiple layers will be addressed in a future paper. Even
though the technique does not place any restrictions on the
shape of the boundary, we apply this technique to a pen-
etrable oceanic wedge. The reason we have chosen the
wedge is that it has a simple geometry yet it possesses most
of the interesting physical properties of a range-dependent
waveguide. Furthermore, the wedge has been studied by nu-
merous authors,19–22 whose works provide valuable bench-
mark solutions. The main purpose of this paper is to provide
a benchmark solution for an oceanic wedge of arbitrary bot-
tom slope overlying a fluid bottom or an elastic bottom
�henceforth referred to as an acoustic or an elastic wedge,
respectively�. For simplicity of presentation, we model a
wedge in a two-dimensional ocean, realizing that modifica-
tion to a three-dimensional ocean is straightforward. We will,
however, discuss the use of the virtual source technique in
modeling propagation in an azimuthally symmetric ocean in
Appendix A.

This paper is organized as follows: In Sec. II propaga-
tion in range-dependent waveguide is formulated for an is-
ovelocity fluid layer overlying an isovelocity fluid or elastic
half space. In Sec. III the method is applied to an acoustic
and elastic Pekeris waveguide and to an acoustic and an elas-
tic wedge and the results are compared to available published
results. The paper concludes with a discussion in Sec. IV.

II. FORMULATION

A. The acoustic case

This formulation is carried out in a two-dimensional
Cartesian coordinate system �x ,z�. The z axis is pointing
downward and the plane z=0 represents the ocean surface.
The Helmholtz equation for a line source at �x� ,z�� is given
by

� �2

�x2 +
�2

�z2 + k2�Gp�r,r�� = ��x − x����z − z�� , �1�

where

r = �x,z�, r� = �x�,z�� .
The Green’s function, Gp�r ,r�� is given by
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Gp�r,r�� =
i

4
H0

�1��k�r − r��� , �2�

where the subscript p is used to indicate that Gp is a pressure
Green’s function. Later we will also introduce Gu, the dis-
placement Green’s function. The Green’s function given by
Eq. �2� is a fundamental solution of Eq. �1� and satisfies the
Sommerfeld radiation condition in the far field. These two
conditions make G�r ,r�� suitable for use as basis functions
in the virtual source technique.

Let us represent the bottom boundary by h�x� and the
unit normal to the boundary by

n̂ =
�− �h,1�

�1 + ��h�2
.

We intend to solve the Helmholtz equation for the pressure
p�x ,z�,

��2 + k2�p�x,z� = 0, �3�

for the following boundary conditions:

p�x,0� = 0,

�p�−
+ = 0, �n̂ · u�−

+ = 0. �4�

The above equations express the pressure-release boundary
condition at the ocean surface and the continuity of pressure
and normal displacement at the water-bottom interface. Since
the basis functions given by Eq. �2� satisfy Eq. �3�, they will
be used by the virtual source technique to express the solu-
tion as a sum of basis functions. The boundary conditions
given by Eq. �4� will subsequently be imposed. Since two
sets of boundary conditions need to be satisfied at the inter-
face, two sets of virtual sources are needed. To do this, a set
of sources is placed just below the interface to produce the
field in water and another set of sources is placed just above
the interface to produce the field in the bottom. Let N denote
the number of sources, and let the position of source i be
denoted by the position vector ri= �xi ,zi�. Let r1 represent the
location of the sources that produce the field in the water and
r2 represent the location of the sources that produce the field
in the bottom. Let us also represent by ra the location of
points on the interface or nodes where the boundary condi-
tions will be imposed. The pressure-release boundary condi-
tion at the flat ocean surface can be constructed by the
method of images. Therefore, the Green’s function for the
field in the water produced by the sources located at rp is

Gp
�1��r;r1� =

i

4
H0

�1��k1�r − r1�� −
i

4
H0

�1��k1�r − r1
i �� ,

where r1
i represents the location of the image sources. In the

above equation all the quantities represented by capitol bold
letters are matrices. For example, the entries of H0

�1��k1 �r
−r� � � are H0

�1��k1 �ri−rj� � �, where r, is the location of receiver
i and rj� is the location of source j. In this paper we have
adopted the convention of representing vectors by lower-case
bold letters and matrices by upper-case bold letters. The
Green’s function for the field in the bottom produced by the

sources located at rq is
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Gp
�2��r;r2� =

i

4
H0

�1��k2�r − r2�� .

In the above equations k1=� /cw, k2=� /cb, where � is the
angular frequency, cw is the water sound speed and cb is the
bottom sound speed, the subscripts 1 and 2 specify the water
and bottom layers, and the position vector r represents the
location of the field points and has the same dimension as r1

and r2. Note that the Green’s functions in the water auto-
matically satisfies the pressure-release boundary condition at
the water surface, z=0. The field due to the virtual sources of
amplitude s1 ,s2 , . . . ,sN located at r1� ,r2� , . . . ,rN� at a field point
r can be written

p�r� = 	
j=1

N

Gp�r;rj��sj .

In vector notation, this can be expressed as

p�r� = Gp�r;r��s ,

and for a vector of field points r1 ,r2 , . . . ,rN, vector-matrix
notation may be used to write

p�r� = Gp�r;r��s ,

where in the above p and s are column vectors of length N
and Gp is a N�N matrix. Using the same notation, the field
in the water and in the bottom can be expressed as a sum of
virtual sources of source amplitude s1 and s2,

p�1,2��r� = Gp
�1,2��r;r1,2�s1,2,

u�1,2��r� = Gu
�1,2��r;r1,2�s1,2. �5�

where the normal displacement, u, is a column vector whose
elements are ui= n̂ ·�pi / ���2� and Gu is a matrix whose el-
ements are Gu�i,j�= n̂ ·�Gp�i,j� / ���2�. Applying the continuity
of pressure and normal displacement at the nodes ra gives

pinc�ra� + Gp
�1��ra;r1�s1 = Gp

�2��ra;r2�s2,

uinc�ra� + Gu
�1��ra;r1�s1 = Gu

�2��ra;r2�s2. �6�

In the above equations pinc is the incident field due to a
source in the water and uinc is a column vector whose ele-
ments are uinc�i�= n̂ ·�pinc�i� / ���2�. The source amplitudes
can be obtained from the solution of the above equations,

s1 = �Gp
�1� − KGu

�1��−1�Kuinc − pinc� ,

s2 = �LGu
�2� − Gp

�2��−1�Luinc − pinc� , �7�

where

K = Gp
�2��Gu

�2��−1 and L = Gp
�1��Gu

�1��−1.

The arguments of the functions in Eq. �7� are those in
Eq. �6�. The source amplitudes determined from Eq. �7� in
conjunction with Eq. �5� give the field anywhere in the

waveguide.
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B. The elastic case

For an elastic bottom, in addition to the pressure-release
boundary conditions at the ocean surface, the following
boundary conditions at the water-bottom interface must be
satisfied:

�n̂ · u�−
+ = 0,

n̂ · � · n̂ = − p ,

n̂ � �� · n̂� = 0. �8�

The first equation expresses the continuity of normal dis-
placement and the bottom two express the continuity of the
normal component of the stress tensor, �. We express the
field in the bottom as a sum of virtual sources

��2��r� = G�
�2��r;r2�s2,

��2��r� = G�
�2��r;r3�s3. �9�

In the above equations � and � are the scalar and shear
potentials, satisfying

��2 + kp
2���2� = 0,

��2 + ks
2���2� = 0,

where kp=� /cp and ks=� /cs, and cp and cs are the compres-
sional and shear speeds in the bottom, respectively. The po-
sition vectors, r2 and r3, represent the location of sources
producing the compressional and shear fields in the bottom.
The compressional and shear potential Green’s functions,
G�

�2� and G�
�2�, satisfy

��2 + kp
2�G�

�2��r,r�� = ��x − x����z − z�� ,

��2 + ks
2�G�

�2��r,r�� = ��x − x����z − z�� ,

whose solutions are

G�
�2��r,r�� =

i

4
H0

�1��kp�r − r��� ,

G�
�2��r,r�� =

i

4
H0

�1��ks�r − r��� . �10�

The displacement vector can be written in terms of two sca-
lar potentials,

u = �� + � � �0,�,0� ,

and the stress tensor in the bottom are related to the displace-
ment according to

�ij = ��ij
 �u1

�x1
+

�u2

�x2
+

�u3

�x3
� + �
 �ui

�xj
+

�u j

�xi
� .

In the above �ij is the Kronecker delta function and � and �
are the Lamé constants,

� = ��cp
2 − 2cs

2�, � = �cs
2.

Note that in the above equations the arguments of the com-

ponents of the fields, r, have been suppressed; instead they
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have been expressed using bold face character to indicate
that they are vectors.

In two dimensions the components of the stress tensor
can be written in terms of the displacement vector as

�xx = �� + 2��
�ux

�2�

�x
+ �

�uz
�2�

�z
,

�xz = �
 �ux
�2�

�z
+

�uz
�2�

�z
� ,

�zz = �� + 2��
�uz

�2�

�z
+ �

�ux
�2�

�x
,

and the displacement vector can be expressed in terms of the
potentials

ux
�2� =

���2�

�x
−

���2�

�z
, uz

�2� =
���2�

�z
+

���2�

�x
.

To express the field at points �r� due to sources located
at �r��, Eqs. �9� are used, which results in

uz
�1� = Ezs1, ux

�1� = Exs1,

uz
�2� = Uz1

s2 + Uz2
s3,

ux
�2� = Ux1

s2 + Ux2
s3,

where

Ez =
1

�1�2

�Gp
�1�

�z
, Ex =

1

�1�2

�Gp
�1�

�x
,

Uz1
=

�G�
�2�

�z
, Uz2

=
�G�

�2�

�x
,

Ux1
=

�G�
�2�

�x
, Ux2

= −
�G�

�2�

�z
.

Similarly,

�xx = ��� + 2��Uxx1
+ �Uzz1

�s2 + ��� + 2��Uxx2

+ �Uzz2
�s3,

�xz = ��Uxz1
+ Uzx1

�s2 + ��Uxz2
+ Uzx2

�s3,

�zz = ��� + 2��Uzz1
+ �Uxx1

�s2 + ��� + 2��Uzz2

+ �Uxx2
�s3.

In the above,

Uxx1
=

�2G�
�2�

�x2 , Uzz1
=

�2G�
�2�

�z2 ,

Uxx2
= −

�2G�
�2�

�x � z
, Uzz2

=
�2G�

�2�

�z � x
,

Uxz1
= −

�2G�
�2�

, Uzx1
= Uxz1

,

�x � z
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Uxz2
= −

�2G�
�2�

�z2 , Uzx2
=

�2G�
�2�

�x2 .

Let us write the unit normal to the interface as

n̂ = nxx̂ + nzẑ ,

and further define

A1 = �� + 2��Uxx1
+ �Uzz1

,

A2 = �� + 2��Uxx2
+ �Uzz2

,

B1 = �� + 2��Uzz1
+ �Uxx1

,

B2 = �� + 2��Uzz2
+ �Uxx2

,

C1 = Uxz1
+ Uzx1

,

C2 = Uxz2
+ Uzx2

.

The boundary conditions given by Eq. �8� can be written

�nx � p/�x + nz � p/�z�/��2 = nxux
�2� + nzuz

�2�,

− p = nx
2�xx + nz

2�zz + 2nxnz�xz,

�nx
2 − nz

2��zx + nxnz��zz − �xx� = 0.

In the above equation p is the total pressure in the water.
Substituting for the pressure, the components of displace-
ment, and the stress tensor in terms of the source amplitudes,
we get

�nx � pinc/�x + nz � pinc/�z�/��2 + �nxEx + nzEz�s1

= �nxUx1
+ nzUz1

�s2 + �nxUx2
+ nzUz2

�s3,

− pinc − Gp
�1�s1 = �nx

2A1 + nz
2B1 + 2nxnzC1�s2 + �nx

2A2

+ nz
2B2 + 2nxnzC2�s3,

��nx
2 − nz

2�C1 + nznx�B1 − A1��s2 + ��nx
2 − nz

2�C2 + nznx�B2

− A2��s3 = 0.

The above equations can be solved to give

s1 = �− Gp
�1� − KGu

�1��−1�Kuinc + pinc� ,

s2 = �− LG̃u
�2� − G̃p

�2��−1�Luinc + pinc� ,

s3 = − �3�2s2, �11�

where

�2 = �nx
2 − nz

2�C1 + nznx�B1 − A1� ,

�3 = �nx
2 − nz

2�C2 + nznx�B2 − A2� ,

G̃p
�2� = �2 − �3�3

−1�2,

G̃�2� = �2 − �3�−1�2,
u 3

. T. Abawi and M. B. Porter: Propagation in an elastic wedge 1377



�2 = nx
2A1 + nz

2B1 + 2nxnzC1,

�3 = nx
2A2 + nz

2B2 + 2nxnzC2,

�2 = nxUx1
+ nzUz1

,

�3 = nxUx2
+ nzUz2

,

K = G̃p
�2��G̃u

�2��−1,

L = Gp
�1��Gu

�1��−1.

The source amplitudes given by the above equations com-
pletely specify the components of the field anywhere in the
waveguide.

III. RESULTS

In this section we apply the model developed in the

FIG. 1. Propagation in an elastic Pekeris waveguide: The top left panel sho
compressional sound speed, cp=1700 m/s, and shear sound speed, cs=
=1800 m/s. The right panels show a comparison of transmission loss obt
solution. The dynamic range in the field plots is from −60 to 0 dB.
previous section to various propagation problems. As a first
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example, we compute the pressure field in a range-
independent waveguide composed of an isovelocity water
layer over an elastic half-space bottom. Since this problem
can be solved exactly by other methods, the purpose of pre-
senting it is to validate the virtual source solution. In this
example, a 25-Hz line source is placed at a depth of 30 m.
The problem is solved for two sets of bottom paramters. In
case 1 the bottom compressional sound speed cp

=1700 m/s and its shear sound speed cs=700 m/s; in case
2, cp=3000 m/s and cs=1800 m/s. In both cases, the bottom
compressional attenuation is 0.5 dB/� and its shear attenua-
tion is 0.25 dB/�. Attenuation enters the computations
through the complex wavenumbers according to kp,s

=� /cp,s�1+�p,s /54.58i�.23 The results are shown in Fig. 1.
The two panels on the left show the compressional pressure
field in the waveguide for the two cases and the two panels
on the right show transmission loss as a function of range for
a receiver at 50 m. The transmission loss obtained from the

he acoustic field for a 200 m deep water layer over an elastic bottom with
/s. The bottom left panel shows the same for cp=3000 m/s and cs

using the virtual source technique and an exact, wavenumber integration
ws t
700 m

ained
virtual source technique for the two cases is compared with
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the exact solution. It should be pointed out that in all ex-
amples in this paper we used ten virtual sources per wave-
length: It can be seen that the virtual source solutions agree
very well with the exact solution. It should be noted that the
virtual source technique is designed to force boundary con-
ditions at an arbitrarily shaped boundary or interface. In this
example, the method is validated for a simple boundary only
because it offers an exact solution. However, this validation
confirms that the method is based on sound foundations and
gives reason to believe that it can produce equally accurate
results for more complicated boundaries. The exact solution,
which is used in the validation, will be described in Appen-
dix B.

As a second example, we apply the model to propaga-
tion in an oceanic wedge. The wedge is modeled exactly as
the ASA Benchmark problem.24 It is composed of a water
layer over an acoustic �no shear� half-space bottom. The wa-
ter depth decreases as a function of range from 200 m at zero
range to 0 at 4000 m range, resulting in a wedge angle of
approximately 2.86 deg. The source is a 25-Hz line source,

FIG. 2. Propagation in an oceanic wedge using the virtual source technique:
In the above figure a 25 Hz source is located at 180 m. The water depth,
which is 200 m at the source location, decreases to zero at 4000-m range,
resulting in a wedge angle of approximately 2.86 deg. As can be seen, the
virtual source technique correctly accounts for mode cutoff.

FIG. 3. The above figure shows a comparison of transmission loss obtained
using the virtual source technique and the parabolic equation �PE� in an
oceanic wedge. The line source is located at 100 m. The receiver in the top

figure is at 30 m and in the bottom figure is at 150 m.
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the bottom sound speed is 1700 m/s, and its attenuation is
0.5 dB/�. The acoustic field in the wedge is shown in Fig. 2.
The black line in Fig. 2 indicates the water/bottom interface.
As the water depth decreases as a function of range, the three
propagating modes cut off one after the other. As can be seen
in the figure, the model correctly accounts for this process.
Figure 3 shows a comparison of transmission loss for two
receiver depths, 100 and 150 m, computed using our model
and the parabolic equation �PE� model for a line source. The
source in both cases was at 100 m. The small differences
between the virtual source solution and the PE solution may
be associated with the fact that the PE solution is one-way,
accurate within the accuracy of the paraxial approximation,
where the virtual source solution is an exact solution.

As a final example, we computed the compressional and
shear potentials for an elastic wedge. The results are shown
in Figs. 4 and 5. In Fig. 4 the bottom compressional sound
speed cp=1700 m/s and its shear sound speed cs=700 m/s.
The top panel shows the compressional potential field and
the bottom panel shows the shear potential field for a 25-Hz
source located at 180 m. Figure 5 shows the same for the
case when cp=3000 m/s and cs=1800 m/s. The results for
this example compare well with those obtained using the
parabolic equation method in Fig. 3 of Ref. 25. The source
distribution for this example is shown in Fig. 6.

IV. SUMMARY

Boundary integral methods essentially take advantage of
the divergence theorem to replace a partial differential equa-
tion in a volume with an integral equation along a boundary,
with the free-space Green’s function expressing how points
on the boundary mutually affect each other. The virtual
source method is really just a boundary integral method that
emphasizes the view of points on the boundary as discrete
sources and receivers.

FIG. 4. The above figure shows the compressional and shear potentials in an
elastic wedge in the case where the compressional sound speed cp

=1700 m/s and the shear sound speed cs=700 m/s in the bottom. A 25 Hz
source is located at 180 m and the compressional and shear attenuation are

0.5 dB/� and 0.25 dB/�, respectively.
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To date, the virtual source method has been used princi-
pally for target scattering problems in ocean waveguides—
the target then provides a natural boundary. However, the
method has much broader applicability. The work of
Fawcett18 for a rough surface patch provides an important
example of that. In this paper we have shown that the
method can be used for complicated elastic range-dependent
waveguides, providing an essentially exact solution. The ap-
plication to elastic problems is particularly important in pro-
viding benchmark-quality solutions for other emerging meth-
ods for elastic problems based on the parabolic equation,
finite elements, and coupled modes. While simple geom-
etries, such as the wedge, have been shown here, we empha-
size that the method is not restricted to flat boundaries. Fur-
ther, problems with sound-speed gradients may be handled
by substituting the appropriate Green’s function, which in
turn may be computed in various ways. This latter generali-
zation will be the subject of a future paper.
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APPENDIX A: THE VIRTUAL SOURCE TECHNIQUE IN
AN AZIMUTHALLY SYMMETRIC OCEAN

In an azimuthally symmetric ocean any source not lo-
cated at the origin is a ring source centered at the origin. To
derive the Green’s function for a ring source of source

FIG. 5. The above figure shows the compressional and shear potentials in an
elastic wedge in the case where the compressional sound speed cp

=3000 m/s and the shear sound speed cs=1800 m/s in the bottom. A 25-Hz
source is located at 180 m and the compressional and shear attenuation are
0.5 dB/� and 0.25 dB/�, respectively. These results compare well with
those obtained using the PE method in Fig. 3 of Ref. 25.
strength Sw in free space, consider the wave equation
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��2 + k2���r,z� = Sw��z − zs�
��r − rs�

2	r
. �A1�

Performing the forward Hankel transform,

f�kr,z� = �
0




f̃�r,z�J0�krr�r dr ,

on the above equation gives


 d2

dz2 + kz
2��̃�kr,z� =

Sw

2	
��z − zs�J0�krrs� ,

where kz
2= �k2−kr

2�. The solution of the above equation is
given by26

�̃�kr,z� = − SwJ0�krrs�
eikz�z−zs�

4	ikz
. �A2�

By performing the inverse Hankel transform on Eq. �A2�, the
Green’s function for a ring source in an azimuthally symmet-
ric ocean can be obtained:

FIG. 6. This figure shows the source distribution for the example of propa-
gation in an elastic wedge. To be able to see the sources, only one in every
ten have been shown. The solid line shows the water/bottom interface. The
sources represented by the black dots are those that produce the field in the
water and those represented by the red and the blue dots are the ones that
produce the compressional and the shear potentials in the bottom, respec-
tively.
FIG. 7. The arc contour used in the integration of Eq. �B2�.
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G�r,z;rs,zs� = −
Sw

4	i
�

0


 eikz�z−zs�

kz
J0�krr�J0�krrs�kr dkr.

�A3�

To be able to treat propagation for a point source using the
virtual source technique in the wedge described in Secs. II A
and II B, assuming that the wedge is azimuthally symmetric,
the free space Green’s function given by Eq. �A3� should be
used instead of the free space Green’s function for a line
source.

APPENDIX B: AN EXACT WAVENUMBER INTEGRAL
SOLUTION

Consider a waveguide composed of an isovelocity water
layer of depth h over an elastic half space bottom with den-
sity �b and compressional and shear sounds speeds cp and cs.
The spectral components of the potential field for a line
source located at z=zs satisfy the depth-separated wave equa-
tion

� d2

dz2 + �k2 − kx
2����kx,z� = Sw

��z − zs�
2	

,

where
ation, the center of the circle, �k0 ,y�, is given by

J. Acoust. Soc. Am., Vol. 121, No. 3, March 2007 A
��x,z� = �
−





�̃�kx,x�eikxx dkx. �B1�

In the spectral domain, the potential in the water due to a
source at z=zs can be written

�̃1�kx,z� = Sw
eikz1

�z−zs�

4	ikz1

+ Aeikz1
z + Be−ikz1�z−h�.

In the above equation the first term is the contribution due to
the source and the second and the third terms are downward
and upward propagating waves, with kz1

=�k1
2−kx

2, where
k1=� /c1. In the bottom the upward propagating wave
must vanish due to the radiation boundary condition at
infinity. The compressional and shear potentials thus can
be written as

�̃2�kx,z� = Ceikz2
�z−h�,

�̃2�kx,z� = Dei�z2
�z−h�,

where kz2
=�kp

2 −kx
2 and �z2

=�ks
2−kx

2, with kp=� /cp and ks

=� /cs. The coefficients A, B, C, and D are determined by
satisfying the pressure release boundary condition at z=0
and by demanding the continuity of the normal and tangen-
tial components of the stress tensor and the normal compo-
nent of the displacement vector at z=h. The result is

1 eikz1

h 0 0

eikz1
h 1 −

�b

�w

1 − 2

kx
2

ks
2� − 2

�b

�w

kx�z2

ks
2

ikz1
eikz1

h − ikz1
− ikz2

− ikx

0 0 2kxkz2
�2kx

2 − ks
2�
�A

B

C

D
� =

Sw
ieikz1

zs

4	kz1

Sw
ieikz1

�h−zs�

4	kz1

− Sw
ieikz1

�h−zs�

4	

0

� .
To convert the solution back to the spatial domain, Eq. �B1�
is used. However, since the kernel of the integral is even
with respect to kx, Eq. �B1� can be written

��x,z� = 2�
0

kmax

�̃�kx,x� cos �kxx� dkx, �B2�

where kmax is the maximum value of kx at which the inte-
gral is truncated. In this paper, kmax was chosen to be 2kw,
where kw=� /cw. Since the integrand has poles on the real
axis, which correspond to the eigenvalues of the wave-
guide, we integrated Eq. �B2� along the arc contour shown
if Fig. 7. The contour, which is a section of a circle of
radius r, centered at �k0 ,y�, is designed such that its maxi-
mum distance from the real axis, �k, is always equal to
the wavenumber sampling, �kx. Based on this consider-
k0 = kmax/2,

y = �k0
2 − �kx

2�/2�kx.

The points on the contour satisfy

k = kx + iki,

where

ki = y − �r2 − �k0 − kx�2.
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