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The coupled mode parabolic equati®E) is a generalization of the adiabatic mode PE that includes
mode coupling terms. It is practical to apply this approach to large-scale problems involving
coupling of energy between both modes and azimuths. The solution is expressed in terms of the
normal modes and mode coefficients, which satisfy coupled horizontal wave equations. The coupled
mode PE may be solved efficiently with the splitting method. The first step is equivalent to solving
the adiabatic mode PE over one range step. The second step involves the integration of the coupling
term. The coupling mode PE solution conserves energy, which is an important aspect of a
range-dependent propagation model. The derivation of the coupled mode PE, which involves
completing the square of an operator, is related to the derivation of an adiabatic mode PE that
accounts for ambient flow. Examples are presented to illustrate the accuracy of the coupled mode
PE. © 1997 Acoustical Society of Amerid&50001-496€27)05406-4

PACS numbers: 43.30.Bp, 43.30.(8AC-B]

INTRODUCTION The coupled mode PE is obtained by including coupling
term$°~2°in the horizontal wave equations. Mode coupling

The Perth—Bermuda®and Heard Islarfti” experiments  may also be treated using vertical interface conditirghe
have stimulated interest in global-scale ocean acoustics. It isplitting solutiori* of the coupled mode PE involves the nu-
very difficult to solve global-scale problems due to the sizemerical solution of the adiabatic mode P&hich does not
and complexity of the medium and the coupling of energyinvolve coupled equationsand the integration of a mode
between both modes and azimuths. The global-scale result®upling term(which does not involve azimuthal coupling
that have been generafed®®neglect one type of coupling The coupled mode PE solution conserves energy, which is an
and are based on adiabatic mdd& parabolic equation important property of a range-dependent propagation
(PB),**%%and ray approximations. There are indications thatmodel®?~3*The derivation of the coupled mode PE involves
both types of coupling occur for some global-scalecompleting the square of an operator and is similar to the
problems’ Three-dimensional PE mod&id® handle both  derivation of the windy PES which is a generalization of the
types of coupling but are only practical for small-scale prob-adiabatic mode PE that accounts for ambient flow. The deri-
lems. In this paper, we derive and test a generalization of thgation of the coupled mode PE is presented in Sec. |. Ex-
adiabatic mode PE that includes coupling terms. It is prac- amples are presented in Sec. Il to illustrate the accuracy of
tical to apply the coupled mode PE to large-scale problemghe coupled mode PE.
and possibly even global-scale problems at low frequencies.

The adiabatic mode solution is based on the assumption
that energy does not couple between the ma@deseigen- | perIVATION
functiong of the depth separated wave equation. The acous-
tic field is represented locally in terms of the modes, and the ~ We derive the coupled mode PE in this section. To sim-
mode coefficients satisfy horizontal wave equations. In somelify the derivation, we work in Cartesian coordinates and
cases, it is possible to obtain useful information by solvingneglect attenuation. We later convert to cylindrical coordi-
for only a fraction of the mode coefficients. The horizontal nates and include the effects of attenuation as a perturbation
wave equations may be solved efficiently with the PEby allowing the modal eigenvalues to be compixthe
method!® which handles caustics and horizontal variations insound speea and densityp may vary arbitrarily with the
the properties of the medium. At low frequencies, it is prac-depthz but are assumed to vary gradually with the ramge
tical to solve global-scale problems with the adiabatic modeand cross rangg We place a time-harmonic point source of
PE® This approach is more efficient than three-dimensionatircular frequencyw on the z axis and remove the factor
PE models because the number of propagating modes is usexXp(— iwt) from the complex pressufe
ally much smaller than the number of grid points that are  In order to handle density variations efficiently we work
required in a finite-difference treatment of the depth operawith the reduced pressuge = p~ 2P, which satisfies the

tor. Helmholtz equation,
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wherek= w/c is the wave numbery=log p, andV? is the ~ Factoring the operator in E¢11) under the assumption of
horizontal component of the Laplacian. The solution of Eq.gradual range dependence, we obtain

(1) is expressed in terms of the local normal modes as
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wherep; is the j th mode coefficient and thpth mode ¢, }pzo' (12
and eigenvaludsz(x,y) satisfy _ ) _

This approach for factoring Eq10) was used to derive the
32¢j =, 2 windy PE from a similar horizontal wave equation in which
T2 TKei=k e, 4 advection terms play the role of the coupling tefin#s-

suming that outgoing energy dominates backscattered en-

ergy, we obtain the outgoing wave equation:
f did; dz= 5. 5 9y going d
ap (92 0 1/2
The semicolon in the argument gf indicates slow variation o AP Y2 +2A, 7y +K?| p. (13

with respect to the horizontal coordinates. To obtain a

leading-order mode coupling correction in the limit of In cylindrical geometry, we remove the spreading factor
gradual horizontal variations io and p, we retain only the 2 from p and obtain the following counterpart to Eq.
first horizontal derivatives o; . We later account for hori- (13):

zontal yariations irkj by including an energy-conservation ap 1 2 19 112
correction. —=—A,p+i —2—2+2A0——+K2) P, (14)
Substituting the normal mode representation into Eq. 9" r=oe rae
(1), we obtain where the entries of, andA, are defined by
2 $(Viptkip)~ -2 (%‘%+%i—?) A,M:f ¢ %’:sz, (15)
(6)
Multiplying Eq. (6) by ¢;, integrating over depth, and using Aﬁ,i,j:f ¢i%(2i;j dz (16)

Eq. (5), we obtain the horizontal wave equations,

When acoustic energy propagates from a point source in
, (77 a medium with gradual horizontal variations, azimuthal
terms are usually dominated by other terms in the wave
equation. For many problems, it is possible to ignore azi-
muthal terms altogether and apply the uncoupled azimuth
approximatior?® Even when azimuthal coupling is signifi-
208 cant, the azimuthal terms tend to be less important than other
Ax,i,j:f i IX dz, ®) terms(e.g., the three-dimensional PE models of Refs. 17 and
18 are based on a narrow-angle expansion in the azimuth
A :f 6, (9_¢, dz ) term but a wide-angle expansion in the depth teMde use
Vi bgy T this fact and observations of solutions of the windy PE to
motivate a useful simplification of Eq14). The windy PE is

terms on the right side of Ed7). Placing the mode coeffi- |5r 1o Eq.(14):

cients into the vectop, the coupling coefficients into the

) : ) . 12
matricesA, and A,, and the eigenvalues into the diagonal Ip; . (1 19 '
X —=—|ijjrpj+| 7(9_62+2|kjuj07(9_9+kj2 Pj,

i ax

+Ay,i,j W

pri+ki2pi~_2; (A

where the coupling coefficien®, ; ; andA, ; ; are defined
by

y H

matrix K2, we obtain ar
1
Fp p ap ap (1
W+a_y2+K Pt+2A +2A, @=0- (100 where U;, and U;, are defined in terms of the wind

_ _ velocity®* We have found that the cross term in EG7),
It follows from Eg. (5 that the coupling matricesA,  which involves the product of a flow operator and an azi-

= — A, andA,=—A| are antisymmetric. We refer to solu- muthal coupling operator, tends to be dominated by the other
tions of Eq.(10) as continuous coupled mode solutions asterms. In particular, the solutions of the equation
opposed to the stepwise coupled mode solutions of Ref. 30.

Completing the square of the range operator in &Q) ap; . .
. . : . . ___|ijjrpj+|
and neglecting a higher-order coupling term, we obtain ar

2

J 1/2
2
—+ K*
2 g2 K

p; (18)
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are nearly identical to the solutions of E@.7) for the ex- au [1 &2 ) 12
amples presented in Ref. 35. o 0z tKY (25
Neglecting the cross term in E@14), we obtain the
coupled mode PE, du
—=—AU. (26)
ap (1 P , 112 or
E=—A,p+|(r—2 22 7K P (19 sinceK? is diagonal and the cross term in E4.4) was

dropped, Eq(25) is an uncoupled system that reduces to the
The first term on the right side of E(L9) accounts for mode  horizontal wave equations involved in the adiabatic mode PE
coupling in the radial direction. The second term accountgg|ution. We therefore solve E(R5) over a range step using
for azimuthal coupling and refraction. Neglecting the crosse approach described in Ref. 19. The operator square root
term to obtain Eq(18) does not provide a significant advan- js approximated using a rational function expansion about
tage for the windy PE. Neglecting the cross term to obtainpe representative horizontal wave numbley. Crank—
Eq. (19 leads to a significant simplification of the numerical Njcolson integration is used for the range discretization. The
solution of the coupled mode PE because it permits the usgimuyth discretization involves a tridiagonal matrix modified
of alternating directions. Neglecting the cross term can bgith entries in the upper right and lower left corners to ac-
justified by an asymptotic argument. We regard azimuthatoynt for periodicity. The numerical solution of E(6) is
coupling as a perturbation and retain only the leading ordepptained using Crank—Nicolson integration.
mode coupling correction to the adiabatic mode PE. Since  There are several possible ways to extend or improve the

Arp andAp are of the same order, it follows that coupled mode PE. When coupling is mostly into neighboring
1 4p modes, it is possible to improve efficiency by approximating
‘KlAgFa_o <|A,p|. (200 A, with a banded matrix* The coupled mode PE can be

modified to account for energy loss due to coupling into the
In other words, the first term on the right side of E4) nonpropagating or nontrapped modes by including positive
dominates the cross term. entries along the main diagonal of the coupling matrix. It
The solution of Eq(19) does not conserve energy. One should be possible to include the effects of coupling with the
approach for deriving a coupled mode PE that conserves estepwise approach of Ref. 30 as an alternative to using the
ergy would be to perform a WKB analysis that includes hori-coupling term in Eq(19). With this approach, the medium is
zontal derivatives of the environmental parameters. An easiggpproximated by a sequence of range-independent regions
approach is to incorporate previous results and then verifpand the transmitted fields across vertical interfaces are ap-
that energy is conserved. Energy-conserving solutions can groximated with the energy-conserving condition described
obtained by defining a new dependent variable that is relateth Ref. 34. This approach includes higher-order coupling
to the energy-flux density. The dependent variable in Eqgterms and is a generalization of the step-wise coupled mode
(19 is missing the correction factdqf”2 that occurs in the solution to three dimensions.
complete energy conservation correcttSnApplying this

correction as described in Ref. 19, we define= k{*p; and
obtain the energy-conserving coupled mode PE solution, || [MPLEMENTATION AND EXAMPLES
p(r,6,2)= r*1’22 [kj(r,0)]*1’2uj(r,0)¢j(z;r,0), In this section, we present examples to illustrate and test
]

solutions of the coupled mode PE. Although several papers
(21 have been published on continuous coupled modes, there ap-

Ju 72 12 parently has not been any benchmark testing to confirm that
—=—AUu+i|—=—5+K?| u, (22) this technique actually works. The implementation of the
o r=oe coupled mode PE involves the solution of the eigenvalue

whereu; is the j th entry ofu. The initial condition corre- Problem throughout the region of interest. Once the eigen-

sponding to a point source atz, is values, eigenfunctions, and coupling coefficients are ob-
tained and stored, the coupled mode PE solution may be
u;j(0,0) = ¢;(24;0,0). (23)  obtained efficiently for different combinations of source and

The second term on the right side of E@2) conserves receiver locations. For the adiabatic case, this precalculation

energy because the adiabatic mode PE conserves e]ri?ergy’?‘pproac.ll|2 D‘;gs been usgd 0 s_olve.problems in matched-field
The coupling term produces a rotation ofand conserves processing*8that require replica fields for large numbers of
energy because source and receiver locatiolis

Example A is a two-dimensional problem involving a
de du Ju* . ot 25-Hz source ar=50 m in a 200-m-thick waveguide that is
= u=—u*Au—u*Au=0, (24 |ossless and of constant density. The waveguide consists of
two layers that are divided by an interface at

ar Yoo T

whereE=|u|? is the energy flux. The third equal sign in Eq.
(24) follows from the antisymmetry oA, . do for r<l km

We solve Eq.(22) with the splitting method? which z=
involves numerical solutions of the equations

(27)

for r>1 km,

q (27
ot a sin ~
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FIG. 1. Transmission loss &=30 m for example A, which is a two-
dimensional problem that involves a sinusoidal interface between two ho-
mogeneous layers. The solid curves correspor@tthe coupled mode PE
solution and(b) the adiabatic mode solution. The dashed curves correspond
to the energy-conserving PE solution.

where dy=100 m, =5 m, andA=200 m. The speed of
sound is 1500 m/s in the upper layer and 1600 m/s in the
lower layer. The purpose of this example is to show that the
coupling term accurately handles extensive mode coupling.
The waveguide supports six modes corresponding to hori-
zontal phase speeds that range between about 1538 and 41¢
m/s. Results for example A appear in Fig. 1. The coupled
mode PE solution is in agreement with a reference SO'UtiOﬁIG' 2. The mode coefficients for example B, which is a three-dimensional

: TIETRNE oblem that involves a corrugated interface between two homogeneous
that was generated using a finite d,lﬁerence PE mOde_I baségyers. The maximum range is 5 km, the positivdirection is to the right,
on the complete energy-conservation correctibfine adia-  ang the positivey direction is to the top. The left column contains the
batic mode solution breaks down for this problem. coupled mode PE solutions, the center column contains the uncoupled azi-

Example B is identical to example A, with the exception muth solution, and the right column contains the adiabatic mode PE solu-
tion. The modes are shown in increasing order going downward in each

that the interface is at column. The dynamic range is 10 dB, with red corresponding to the highest
22X intensities.
z=dgt+a sin( T) (28

We were motivated to consider this problem because corruype of coupling. Comparing the left and center columns, we
gated interfaces can cause azimuthal coupling by channelingbserve that azimuthal coupling is strongest nearythgis,
energy in they direction!’ To handle the wide range of where the corrugations cause channeling. Comparing the left
horizontal phase speeds, we takék,=2000 m/s and ap- and right columns, we observe that mode coupling is stron-
proximate the operator square root in E2Q) with an eight-  gest near the axis, where range dependence is greatest.
term rational function. We use range and azimuthal grid  Example C involves a 25-Hz source 180 m in a
spacings of 10 m and 0.25°. Results for example B appear ishallow water ocean environment. The sound speed is 1500
Fig. 2. Since both types of coupling are important for thism/s in the water column and 1700 m/s in the sediment. The
problem, there are significant differences between thelensity of the sediment is 1.5 times the density of the water.
coupled mode PE solution and the solutions that neglect on€he attenuation in the sediment is 0.5 §BIr'he ocean depth
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coupled mode PE was demonstrated for benchmark prob-
lems. The coupled mode PE was also applied to solve a
three-dimensional problem.
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