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We prove that the eigenvalues of the Laplacian on a sphere with a Dirichlet bound-
ary condition specified on a segment of a great circle lie between an integer and a
half-integer and for a Neumann boundary condition they lie between a half integer
and an integer. These eigenvalues correspond to the eigenvalues of the angular part
of the Laplacian with boundary conditions specified on a plane angular sector,
which are relevant in the calculation of scattering amplitude. These eigenvalues can
also be used to determine the behavior of the fields near the tip of a plane angular
sector as a function of the distance to the tip. The first few eigenvalues for both
Dirichlet and Neumann boundary conditions are calculated. The same eigenvalues
are also calculated using the Wentzel-Kramers—BrilldWiKB) method. There is
excellent agreement between the exact and the WKB eigenvalue$99® Ameri-

can Institute of Physic§S0022-24887)00603-9

I. INTRODUCTION

The problem of scattering of waves by an elliptic cone was first studied by Kraus and Eevine.
They introduced the sphero—conal coordinate system in which the wave equation, satisfying
boundary conditions on the surface of an elliptic cone, is separable. In this coordinate system the
wave equation separates into two angular Laqeations and the spherical Bessel equation. The
solution of the wave equation for a plane angular se@#S) is a special case of the solution of
the wave equation for an elliptic cone, because, as is shown in Fig. 1, a PAS is a degenerate
elliptic cone. In the work by Kraus and Leviha formal expression for the Green’s function in
terms of an eigenfunction expansion of the products of Lame spherical Bessel functions is
derived, but no numerical results are reported.

Since the work of Kraus and Levine other authors have studied this problem, mainly concen-
trating on the scattering from a PAS. Radfostudied the scattering of a plane wave from a
quarter plane. He determined a two-variable integral representation of the field and then using a
generalization of the Weiner—Hopf method, found a transformation that forces the field to zero on
the quarter plane. Blume and KirchAestudied the singular behavior of the field near the corner
of a plane angular aperture and calculated the lowest eigenvalues for several different slot angles.
Satterwhité investigated the scattering of electromagnetic waves from a perfectly conducting
plane angular sector. He expressed the scattered electric field in terms of an integral equation of
the products of the dyadic Green’s function and the surface current density. The dyadic Green’s
function was found as sums of products of vector wave functions whose components can be
expressed in terms of the solutions of scalar wave equations. Satterwhite calculated the first few
eigenvalues and eigenfunctions for the special case of a quarter plane, but did not report any
results for the solutions of the scattered electric and magnetic fields. De Smedt and Van Bladel
also studied the singular behavior of the electric and magnetic fields near the tip of a PAS. They
showed that the electric field is singulards ' and the magnetic field is singular 88 *, where
r is the distance to the tip of the sector. They calculated the lowest valuesdod 7 using a
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FIG. 1. This figure shows an elliptic cone with apex at the origin, which in the spheroconal coordinate system is
represented by}=14y,, whered, is the angle betwee®A and the positivex-axis. Ford,=m the elliptic cone becomes
degeneratéthe elliptic base collapses to its major ax@D) resulting in the plane angular sect@QD, with corner angle

B. Note that3=0 corresponds to a needle age- 7 corresponds to a half-plane.

variational technique. These valuesiofnd 7 respectively correspond to the lowest Dirichlet and
Neumann eigenvalues discussed in this paper. Boérsseal the Babinet’s principle to show that
the electric singularity exponent for a conducting PAS is identical to the magnetic singularity
exponent for the complementary PAS.

In Sec. Il, we use the results of Kraus and Levite prove a theorem on the range of the
eigenvalues of a PAS; and another theorem to prove that for a Dirichlet boundary condition these
eigenvalues lie between an integer and a half-integer and for a Neumann boundary condition they
lie between a half-integer and an integer. The first few eigenvalues for corner gbgles;, 90°,
and 120°, are tabulated for both Dirichlet and Neumann boundary conditions. In Sec. lll, the
Wentzel-Kramers—BrillouifWKB) solution of this problem is outlined and the same eigenval-
ues calculated by the WKB method are tabulated. The WKB eigenvalues which show remarkable
agreement with the exact eigenvalues, also exhibit the same properties as do the exact eigenvalues,
namely those stated by the two theorems in this paper. The details of the WKB treatment, includ-
ing the calculation of the WKB eigenfunctions and normalization, is the topic of a subsequent
paper. A method for calculating the exact eigenfunctions is included in the Appendix.

II. THE EXACT SOLUTION OF THE WAVE EQUATION FOR A PLANE ANGULAR SECTOR

The sphero—conal variable®(¢,r) are related toX,y,z) by
X=r cos¥y1—«'? cos
y=r sin 9 sin o, (1)
z=r cos¢\1— k% cog ¥,
wherex=cos(B/2) andx’ = \1— «?; the range of the variables are
O=d=w, O=¢=<27w, r=0.

The construction of this coordinate system is described and its orthogonality proved in Ref. 1. The
geometry of the coordinate system may briefly be described as follows: The coondiisatiee
distance to the origin, so the surfacer, is a sphere centered at the origin. The coordirata),

is a semi-infinite elliptic cone whose cross section in a pkeonstant is an ellipse centered on
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FIG. 2. The segmerdb along a great circle.

the x-axis, with its major axis in the plang=0. The surfacep=¢; is a semi-infinite elliptic
half-cone whose cross section in a planeconstant is half an ellipse centered on thaxis with
its major axis in the plang=0. The coordinate system defined by EL).reduces to the spherical
coordinate system whex=1. For «#1 the coordinate surface¥=0 andd=m are plane angular
sectors in the plang=0.

Theﬁwave equation in the sphero—conal coordinate system can be separated into a radial
equatio

, d

g R +[k?r2— p(v+1)]R=0,

d
a r
where the separation constant has been written{as 1), and an angular equation
AgV(9,¢) +v(v+1)V(3,¢)=0, 2

where the angular part of the Laplaciaky,, is given by

1
AQ:K2 Sir 9+ «'2 sirf ¢

d 3
2 R — 2 —
[\/1 K co§ﬂ(w<\/1 K cos’-ﬁ(w

d d
— 12 _ 12
+V1-« 003290—(9@(\/1 K COS"qD&(p)].

Mathematically, specifying boundary con ditions on a plane angular sector is equivalent to speci-
fying boundary conditions on a segment of a great circle of a sphere on Whjidperates, see

Fig. 2. If no boundary condition on the surface of the sphere is specified, the eigenvalyparef
integers and they correspond to the free space eigenvalues. If boundary conditions are specified on
a great circle which extends from the north to the south pole, the eigenvalukg afe half-
integers and they correspond to the eigenvaluedpffor a half-plane. If, on the other hand,
boundary conditions are specified along an arbitrary segment of a great circle, the eigenvalues
correspond to the eigenvalues &f, for a plane angular sector with corner angleBy setting
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AY

FIG. 3. The plane angular sectofs=0, 9=, ¢=0, ¢=7 and ¢=21.

V(3,¢)=0(9)P(¢),

the angular part can be separated into

d| d ]
J1—«?% cog & is J1—«?% cog & a5 O(9) | +[v(v+1)k? sir® 9+ u]O(9)=0, (3
and
d| d
V1-k'Zcog ¢ e V1-k'Zcof ¢ @q)((p) +[v(v+1)k'? sir? o—u]P(¢)=0, (4)

where u is another separation constant. The radial equation is the spherical Bessel equation and
Egs.(3) and(4) are the trigonometric Lamdifferential equations.

The solution of the Laplace equation satisfying Dirichlet or Neumann boundary condition on
the surface of a plane angular sector is of the form

V(9,,1)=rPV(3,¢),

wherer is measured from the tip of the plane angular sector and the boundary sutfaee,is
shown in Fig. 3. When substituted in the Laplace equation,

a9 V(O AoV (O =0
ar\ " ar (0,¢,1)+AgW(F,0,r)=0,
it gives
p(p+1)—v(r+1)=0,
where in obtaining the above results E2). has been used. The solutions of the above equation are
p=v, andp=—wv—1. Near the tip of the plane angular sectorsmal)), the physically possible

solution isp=v, (¥>0), then

Y (9, e,r)=r"V(9,¢),
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which gives ther dependence of the potential near the tip of a plane angular sector. Thus, for a
given boundary condition, the values of which depend on the corner angle, can be used to
determine the behavior of the fields and surface charge densities near the tip of a plane angular
sector.

Eigenvalues of the exact solutiowe take the boundary surface to be the sedterr. The
coordinate-imposed boundary condition @) is that it must be periodic with periodm2®(¢p
+2m)=d(¢p), in order to ensure that it is single-valued. ®f¢) is even, i.e.,a<1>(<p)/a<p|¢=0
= ®/(0) = 0, we can write

Pe(@+2m)=De(p)=Pe(— @),
or
Di(p+2m)=—D(—¢).
This implies
®(m)=0.
On the other hand, b(¢) is odd,®,(0)=0 and
Qo t2m)=Do(@)=—Do(—¢),
which implies
P o(7)=0.
Thus for the even and odd periodic cases we must respectively have
D(0)=D(m)=0,
and
D o(0)=Do(m)=0.

The boundary conditions o8®(9) can be any of the following.

(1) The even Dirichlet boundary condition: In this case®(9) is even @/(0) = 0) and it
satisfies the Dirichlet boundary condition on the boundary surf@cé#)=0). It has been shown
by Kraus and Levinkthat the factorg®(9) and ®(9) of the eigenfunctionV(¥,¢) can only be
both even or both odd. Sing@(9) has been chosen to be evdr(p) must also be even resulting
in the following boundary conditions:

®.(0)=0, O (m)=0,
®)

®(0)=0, P (7)=0.
(2) The odd Neumann boundary condition In this case®(d) is odd @,(0)=0) and it

satisfies the Neumann boundary condition on the boundary sutfgce) = 0. Thend(p) must
also be odd resulting in the following boundary conditions:

0,(0)=0, O4(m)=0,
(6)

P,(0)=0, P (m)=0.

(3) The odd Dirichlet and the even Neumann boundary conditionsBy using the above
arguments, for the odd Dirichlet case we have
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0,(0)=0, O4m)=0,
D,(0)=0, ®y(m)=0.

By writing
O(9)=0(9)—-0(-19),
and imposing the boundary conditié,(7)=0, we find
O(—m)=0(m). (7
Similarly, for the even Neumann boundary condition we have
0.(0)=0, OYm=0,
DY0)=0, DYm=0'
In this case
O(9)=0(9)+0(-19),
or
O, (N=0'(9-0'(-9).

At the boundary surface the left-hand side of the second equation in the above vanishes, resulting
in

0'(m)=0"'(—m). (8

For the odd Dirichlet and the even Neumann boundary conditions &gt and ®(9) are
periodic with period - which results in integer eigenvalues. Furthermore, E@s.and (8)
suggest tha® () is continuous across the boundary surface, which is the case when no boundary
surface is present. The odd Dirichlet and even Neumann boundary conditions therefore are the
same as the free space boundary conditions. The first few eigenvaldes satisfying the odd
Dirichlet, the even Neumann, and the half-plane boundary conditions on a PAS are tabulated in
the Appendix. In this paper we are only interested in the even Dirichlet and odd Neumann
solutions, because these solutions correspond to the case when a boundary surface is present. From
this point on we drop the &” and “o0” subscripts and refer to the even Dirichlet and odd
Neumann cases as the Dirichlet and Neumann cases, respectively.

The eigenvalues and u for the Dirichlet and Neumann boundary conditions are obtained by
simultaneously solving Eq$3) and (4) and imposing the appropriate boundary conditions given
by Egs.(5) and(6).

Theorem 1: For a given value of, u can only take values satisfying

v(v+ k' ?=pu=—v(v+1)k2

Proof: Equation(3) can be written as

d N d 00 |= v(v+1)k? sir? 19+,u® s
gy V17w cos Vg5 O(9)|=- J1-«%cod 9 (9).

Multiplying both sides of the above equation B)+9) and integrating from O ter gives
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dﬁ:_J‘W v(v+1)k? si® 9+ pu

o d d
fo M)ﬁ[”"‘ o3’ 9 g5 O() -0l o

The left-hand side can be integrated by parts to yield

- 2
@(19)% O(9)\V1—-«* cos 9|J— fo (% @(19)) V1—«? cog 9do

——fﬂ v(v+1)k? si? 9+ pu 02(9)d9

—Jo V1— % cog &

The first term is zero for all boundary conditions, so we are left with

7 p(v+1)k? sirt I+ pu

=/ d 2 ,
f (ﬁ @(ﬁ)) J1—«k? cos ﬁdﬁ—fo 02 9

0
The left-hand side of the above equation is positive, so we must have

02(9)d9.

(w1 | St 90K jovu [T 2D om0
144 K —— —— =0.
0 J1—«?cos 9 *J J1—«k? cog 9

Let
7 sir? 902(Y)
o [,
0o J1-—«?cog &
and
g 0%(9)
I :f —_—d9,
" Jo J1-kZcoZ o
then
|
v(v+ 1)K+l ,=0=u=— I—l v(v+1)k2.
2
Since

the smallest possible value thatcan take is whem,/I,=1, i.e.,
w=—v(v+1)k2.

From Eq.(4) we get

fﬂ v(v+1)k'2 si o—u

0 J1—«'Z cod 10

D% (p)de,

- 2
fo (% (I)((p)) J1—«'? cos ede=
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0%(9)dd.

1629



1630 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector

which yields
2 J1 2
v(v+ 1)k’ Jl—,uJ2>0=>,u>J— v(v+1)k'*,
2

whereJ, andJ, arel, andl, with « replaced by, ¥ replaced byp, and® () replaced byb(¢).
Here also

we therefore get
u<v(v+1)x'?
From the two relations fogp we can write

v(v+1)k'’=pu=—v(v+1)k2 9
O

Theorem 2: For any non-negative integer, the eigenvalues ok, with the Dirichlet bound-
ary condition specified on a PAS with corner angte®<7 (segment of a great cirglesatisfy:

n<v<n+3%,
and for the Neumann boundary condition they satisfy:
n+i<v<n+1.

Proof: The proof of this theorem is based on the fact that all positive integers are eigenvalues
of A for the free space boundary condition and all positive half-integers are eigenvalig$af
the half-plane boundary condition. The proof will be carried out in three parts. First, we use the
variational principle on th® equationEg. (3)] to prove that the eigenvalue, corresponding to
Dirichlet boundary condition on a PAS is larger than some non-negative infeddren we use
the variational principle on thé equationEqg. (4)] to prove that this same eigenvalue is smaller
thanqg’ +1/2, whereq’ is some other non-negative integer. Finally, we show tfatq, com-
pleting the proof. Consider th® and® equations,

v(v+1)k? sir® 9+ u

d
—[J1— k% cod 90’ (9)]+
dd “ (9)] 1—«2 cog ¢

0(9)=0, (10

v(v+1)k'? sir o—u

J1—«'Z cod 1)

Equations(10) and (11) are the Euler—Lagrange equations for the functionals

®(¢)=0. 11

d
gl V1= K% cose @'(¢)]+

J;{ VI— 2 coZ 90'2(8)— —— _ 0%(9)|dv,

1-«?cos 9

and
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de.

f;[ VI= K208 @' %)+ ——b 32(y)

1—«'? cos ¢

The eigenvalues of these equationg;+1)=e, are then the stationary values of the functiohals

dd

JOW[ VI— 1% 08 90'(9) ~ ———— 02(9)

1-«?cos O

[a]= , 12

™ K2sir? &

0 V1—«?cod ¢

02(9)dd

and

i _ 12 12 # 2
fo{\/l k'% cos o® me@ (¢) |de
[a]= —— : (13
™ k'? sir? (] 2
D°(p)de

0 J1-«'?cos ¢

where® and® satisfy some type of boundary conditions. The free space boundary condition in
the sphero—conal coordinate system are given by

0'(0)=0, ©'(m)=0, ®'(0)=0, ®'(m)=0. (14)

Note that the above boundary conditions also correspond to the even Neumann boundary condi-
tion for a PAS. The Dirichlet boundary condition for a PAS is

®'(0)=0, O(w)=0, ®'(0)=0, P'(m)=0, (15

and the Dirichlet boundary condition for a half-plane in the sphero—conal coordinate systam is
this case the half-plane is made up of two plane angular sealers; and o=, see Fig. 3

®'(0)=0, O(m)=0, ®'(0)=0, ®(m)=0. (16)

Recall that the solution of Eq$3) and (4) subject to boundary conditiond4) or (16), respec-

tively, correspond to integer or half-integer values of the eigenvaluBy comparing the above
boundary conditions, we note that the boundary condition for a PAS can be obtained from the free
space boundary condition by changing the boundary condition o teguation from®’(m)=0

to O(m7)=0, and leaving the boundary condition for tke equation unchanged. Similarly, the
boundary condition for a half-plane can be obtained from the boundary condition for a PAS by
changing the boundary condition on tteequation fromd’(7)=0 to ®(7)=0, and leaving the
boundary condition for th€ equation unchanged. We can relate the free space boundary condi-
tion to the PAS boundary condition by defining a functioim the following way:

O(m)
0'(0)=0, O'(7m)=-—f P ®’'(0)=0, P&'(m)=0. a7

In this case the free space boundary condition corresponds=®, and the PAS boundary
condition corresponds tb=o0. The eigenvalues, in this case, are the stationary values of the
functional
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f:{ V12 coZ 00'4(9)— ——_ ©2(9)|do+fO(m)

o] 1—«? cos O (18
a|= ,
T Kk? St O
—— 0%9)dd
0o J1-«?cof ¥

where the variation$®(0) and 8®(w) are unrestricted. Furthermore, we find

da O2%(m)

of T K2 st Y

O%(9)dd+ 02(9)dd

5,u,J’7T 1
0 J1—k?cos 9 dalo \J1—«k?% cod &

In order to guarantee tha&w/ 6f >0, it is sufficient thatsu/Sa be positive. From Eq.13) we find
that

™ 1
' ) Y d
Sa fo V1—«k'? cos ¢ (e)de
— = >
O ™ k'? sirf(¢)

0 J1—«'Z cod 10

thusda/ 6f>0. This implies that a$ increases from 0, which corresponds to free space boundary
condition, toee, which corresponds to the boundary condition on a PAS, the corresponding eigen-
value also increases. Here if the free space eigenvalue reacliedéas the valug, we must
havevr>(q. This completes the first part of the proof.

Next we want to relate the PAS boundary condition to the half-plane boundary condition by
defining

01
D*(p)de

D ()

0®'(0)=0, O(m)=0, ®'(0)=0, (I)’(ﬂ')z—gT (19

Now the PAS boundary condition correspondsgte 0 and the half-plane boundary condition
corresponds tg=cc. The eigenvalues are then the stationary values of the functional

de+gd?(m)

F{ V1= 2 cof o®'%(g)+ ——r B2
0

1-«'“cos ¢

[a]= ., (20

™ k'2sir? ¢

0 J1-«k'?cos ¢

where now the variatiod@®(0)=0, but 5D(7) is unrestricted. We find

D2(p)de

oa d2( 1)
50

T k'?2sir? @

S m 1
—‘1’2(<P)d<P——Mf ————— P(p)do
0o V1—«'%Zcod ¢ da Jo J1-k'?cod ¢

Sul Sa must be negative to guarantee ti#at/ 5g>0. From Eq.(12) we find that
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12 m+1
f=w ¢=m v=g'+1
f=0 g=o
g=0 g=n v=g+1/2
f=w ¢'=1 v=g"+1
f=0 g=o
g=0 g¢=2 v=g+1/2
f=e ¢'=1 v=g"+1
f=0 g=co f=e g=0 ——|]—————_. PAS
g=0 ¢=I o) FS v=g¢ v=g+1/2
f=eo g'=0  ° “HP v=g'+1/2 v=g'+1
f=0 g=e — b ————— PAS f=e §=0 ——b——————. PAS
g=0 g=0 © FS v=gq f=0 g¢=0 © HP Vv=g+1/2
Dirichlet Neumann

FIG. 4. This figure illustrates the eigenfunction flow discussed in the proof of Theorem 2.

™ 1
— O3 )d¥
501_ JO J1— k2 cod ¢ (%)
o 7 k2 Sind(9) ’
— 0 9)d¥
0 V1—«?cod @

thusédal/ 6g>0. Asg increases from 0, which corresponds to the boundary condition on a PAS, to
o, which corresponds to the boundary condition on a half-plane, the corresponding eigenvalues
also increase. Here if the half-plane eigenvalue reacheg-as has the valug’ + 1/2, we must
havev<q'+1/2. This completes the second part of the proof.

Finally, we must demonstrate that =g. Note that under the combined reversible flow
illustrated by Fig. 4:g going fromo to 0 andf going frome to 0, we convert a Dirichlet
eigenfunction of the half-plane to one of the free-space problem, all the while reducing the
eigenvalue fromg' +1/2 to g. Now the eigenfunction that starts gt=0 must become that of
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0.0

FIG. 5. This figure shows the location of the eigenvalued gfwith boundary conditions on a plane angular sector with
corner angles, 60°, 90°, and 120°. For Dirichlet boundary condition the eigenvalues, in columns niarkdié between

an integer and a half-integer, for Neumann boundary condition the eigenvalues, in columns midrkédie between a
half-integer and an integer.

g=0, since there are no other eigenvalues of the free-space problem beldi2. Next, the
eigenfunctions ag’ =1 (there are two such eigenvalues that are affected by the) fioust
become those af=1 (again there are two sughecause there are no remaining eigenfunctions of
the free space problem below=3/2 once theg=0 mode has already been accounted for. In
general then, the proof proceeds by induction. Assume we have accounted for all the modes up to
g’ —1. The eigenfunctions af’ (there areg’ + 1 such eigenfuntions that are affected by the jlow
must flow to theq eigenfunctiongthere areq+1 such eigenfunctionssince there are no other
available modes witv<<q'+1/2. Hence for aly’, g=q’. For the PAS problem, this proves that
g=v=q+1/2, completing the proof. Therefore, we conclude that the eigenvaluag, @fith a
Dirichlet boundary condition specified on a PA&gment of a great cirdldie between the free
space eigenvalugintegers and the eigenvalues df, when the Dirichlet boundary condition is
specified on a half-planéhalf-integersg, see Fig. 5:

n<v<n+4i.
]

The proof of this theorem for a Neumann boundary condition is very similar to that of a
Dirichlet boundary condition and it is briefly outlined in the following. The free space boundary
condition in the sphero—conal coordinate system appropriate for the Neumann case are given by

®(0)=0, O(m)=0, 6(0)=0, P(m)=0. (21
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This boundary condition also corresponds to the odd Dirichlet boundary condition for a PAS. The
Neumann boundary condition for a PAS is

0(0)=0, O'(m)=0, ®(0)=0, P(m)=0. (22
and the Neumann boundary condition for a half-plane is

0(0)=0, O'(m)=0, P(0)=0, P'(w)=0. (23
If we define the following set of boundary conditions for tfeequation:

b ()
0®(0)=0, O'(m)=0, ®(0)=0, (I)’(ﬂ')=—fT,

thenf=0 will correspond to the half-plane boundary condition drebo will correspond to the
PAS boundary condition. The eigenvalues are the stationary value d28q.We have already
proven thatSa/6f is positive. Thus for a non-negative integgrif the half-plane eigenvalue
reached a$—0 has the valug+1/2, we must haver>q+ 1/2. Next if we define the following
set of boundary conditions for tH& equation:

O(m)
0(0)=0, @)’(77)=—gT ®(0)=0, P(m)=0,

theng=0 corresponds to the PAS boundary condition greke corresponds to the free space
boundary condition. The eigenvalues are the stationary values dfLB).In this case if the free
space eigenvalue reached gs>» has the valueg’ +1, whereq’ is some other non-negative
integer, then we must have<q’ + 1. Again we must demonstrate thgat q’. Here also under the
combined reversible flow: witli going from infinity to zero ang going from infinity to zero, we
convert a Neumann eigenfunction for the free space problem to one of the half-plane problem, all
the while reducing the eigenvalue fromi+ 1 to q+ 1/2, see Fig. 4. The eigenfunction that starts
at g’ =0 must become that af=0, since there is no eigenvalue of the half-plane belowd.
Next, the eigenfunctions at’' =1 (there are two such eigenvalues that are affected by the flow
must become those gf=1 (again there are two sugtbecause there are no remaining eigenfunc-
tions of the half-plane problem below=2 once theq=0 eigenfunction has already been ac-
counted for. This process can be continued until all the modes gp+d have been accounted
for. At q', the q’' eigenfunctions must flow to thg eigenfunctions, since there are no other
available eigenfunctions of the half-plane problem witiq’ +1. Thus for allq’, we must have

g’ =q. Therefore, we have proven that the eigenvalued gfwith the Neumann boundary con-
dition specified on a PA%segment of a great cirgldie between the eigenvalues af, for a
half-plane(half-integerg and the free space eigenvalu@segers, see Fig. 5:

n+i<v<n+1.

lll. THE WKB EIGENVALUES

In order to study the solutions of Eq&) and (4) for large v, it is convenient to transform
these equations to their Jacobian fdtmihis is accomplished in two steps. First, we sty
—a/2, and then use the transformation

dy
E—— — H
at JV1—«Z sin? v,
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1636 Abawi, Dashen, and Levine: The eigenvalues of the plane angular sector

which transforms Eq(3) to
20

dt®

=(h—v(v+1)«? sri(t))O®

whereh=v(v+1)x?+ u and sn is the Jacobian elliptic function. The above equation is of the
general form

d?w
s a(x)w={f(x)+g(x)}w. (24

For smallg/f, this type of equation has approximate solutions of the form

lez(x)=f_1/4(x)exp{i f fl’z(x)dx],

in a given finite interval ,,a,) provided thatf(x) is a real, twice continuously differentiable
function,g(x) a continuous real or complex function, and the error control funckgr), defined

by
1 d? g
F(X)=f el —/z ~ f1e[dX%,
in the absence of singularities, is boundékhe boundedness &f guarantees that the approximate
solution is asymptotically correct for larde If the differential equation has a regular singularity,
ie, q(x) has a double pole, thelR(x) would be bounded only ifj(x) is chosen such that the

coefficient of its singular part is preciselyl/4° The Jacobian elliptic function éft) has a double
pole which is relatively close to the real axis. Therefore, we write

2
h—v(v+1) k2 s(t) = k2(v+ 21— sP(t)) + p— Kz(l—snz(t)),

and choose
f=x?(r+2%(L1—sr(t)) +p
and
0= X(1-sr(t)x2

Note that the choice of the singular partgfs rather arbitrary as long as it does not grow with
Transforming back, we find the solutidn

) \/(V+§)2K2 SIr? 9+
+ 2
€08 fﬁo 1—«? cog o dd+oy[. (29

O(d)=

4 .
V(22 sir 9+
and in a similar manner

1 (v+ )2 2 Slnqu m
O(p)= cosJ’ R de+6,(. (26

Y+ H2e'? si? o—u
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For u>0, the turning point for th&® equation,J,=0, and the turning point for thé® equation,

_ o M
@pp=arcsin m, (27)
. / M
1902 arcsin m (28)

For smallg/f, g can be neglected in E§24) which when transformed back gives Eg) with
v(v+1) replaced by(v+l/2)2. By using the transformation

() =41—k? cod(9)O (),

this latter equation can be converted to

for u<0, ¢,=0 and

d2
57 V() +P(9)0(9)=0, 29

with

(v+3)°Kk? Si? 9+ u

P =17 o2 o) (30
By following the same procedure on tlde equation we find
2
~—2 U(e)+p(e)u(e)=0, (30

de?
where

(v+3H2%k'? sirf o—p

u(e)=VY1—«'2 co(p)@(¢), ple)=

(1—k'? cos o)
By using the Liouville transformation,
dx 1/2
Y(X)Z(@) v(9),
Eq. (29 can be transformed to
d2y do 2 do 1/2 d2 do —-1/2
a2 \w) o) aells] |y

The first term in the curly brackets can be set equal to any smooth functir)i afd for small
ulv the second term can be ignored. We thus set
ddo)\? X2
ax| P=| 7 +a

: (31

giving
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d’y [x? o
ae |z Tay=o

which is the Weber equation. The parametes determined from Eq31) by requiring that the
turning points of the Lamequation and the Weber equation occur at the same time thus ensuring
the regularity ofd9d/dx at the turning points

9 \/M+(v+%)2;<2 Sir? o 2iva [ X
—ain 1 i/ K
Jo=sin (' (v+1/2 2K2)'

Similarly, for thed equation we find

In the above

where now

dx 1/2
Z(X)=(@) u(e).

The phase factorsiy and g, are determined by matching the WKB solutions, E@$) and(26),
to the asymptotic solutions of the Weber equatidtt.is found that!

T _3m  ¢y(a) _ a a
5¢—Z+?+ > +§ D(a)—zln|a|+§,

m _3m ¢(—a) 1 a a
5U—Z+?+ > ii D(a)+§In|a| 5,

where the upper signs are used for Dirichlet boundary condition, the lower signs are used for
Neumann boundary condition and

Ta
D(a)= arcta+tam‘( >

and

¢do(a)=argl'(3+ia).

The parametea determined from Eq(32) is given by

(33

2 (V+%)2K’2—,u - T ) K(e)
a=— ————.e|—-K(e); ¢,
T k'Nv+ )22+ u 2 (v+3)%k'?

where
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1 M
e=—+/————— u>0,
KN (v+3)%k%+

and Il is the elliptic integral of the third kind. For<0 a can be determined from the above
equation by replacing by |u| and " by «. A similar relationship as E¢32), which also gives
Eqg. (33 for the parameten, also holds for theb equation which guarantees the regularity of
de/dx at the turning points. We find the set of eigenvalue equatfons

J,+¢y(a)—D(a)—alnja|+a=(m+3m, m=0,1,...

(39
Jy—¢y(a)+alnja|—a=(n+3m, n=0,1,...
for the Dirichlet boundary condition and
Jot ¢o(a)+D(a)—alnja|l+a=(m+ 7, m=0,1,...
(35

Jy—dy(a)+alnjaj—a=(n+3)m, n=0,1,...

for the Neumann boundary condition, where

9o [(v+3)2k? sir? 9+ pu
Jff 0\/ ’ a9,
1‘)0

1-«?cog 9

and

90 [(v+3)2k'?si o—pu
J(P:f de,

0 1—«'? cos ¢

can be expressed in terms of elliptic mtegr&ls,

2u
\],3: [H

k' V(v+ %)ZKZ"F,U,

2 (vt

7 (v’ )]
5, I+

and
2u 7 (v+3)%kP—
J,= I T ez T —K(ry) o,
K'V(r+ 322+ u (v+3)°k
for u>0 and
—2# T (V+%)2K2+M
Jy= M —— | ~Kr),
k\(v+3)32k" = 2 (v+3)
and

_2,“ - (V‘l‘%)zK’Z
Jo= = 22 [
k\(v+3)32k" = 2 (vt+3)Pk - p
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k(v
r+:_ - . - -~
<N v+
k' (V+%)2K2+,u,
ro=—\/—
K N (v+3)°%" %~ p

andK is the elliptic integral of the first kind. Using relations between elliptic integraise find
from the above equations

for u<0. In the above

Jy+J,=(v+3)m. (36)
For the free space boundary condition, E2{l), we find the set of eigenvalue equations

J,+¢x(a)—D(a)—alnja|+a=(m+3)m, m=0,1,...,

37
Jo— ¢o(a)+D(a)+alnjaj—a=(n+3m, n=01,....

Similarly, for both Dirichlet and Neumann boundary conditions, EG$6) and (23), on a half-
plane we find the set of eigenvalue equations

J,+¢y(a)—alnjal+a=(m+3)m, m=01,...,
(38
Jy—d(a)+alnja]—a=(n+3)mw, n=0,1,....

By adding the eigenvalue equations for the Dirichlet boundary condition(3g. and using Eq.
(36), we obtain

1 D(a)
v=m+n+ -+ , (39
4 T

and by adding the eigenvalue equations for the Neumann boundary conditiof895qve find

3 D(a)
rv=m+n+—— ——. (40
4 ™

Similarly, for the free space boundary condition, Egj7), we find
v=m+n,
and for the half-plane boundary condition, E§8), we find
v=m+n+3.

From the last two equations it can be seen that the WKB eigenvalue equatior{87Edor free
space boundary condition, and Eg8) for half-plane boundary condition, give the eigenvalues,
exactly: that is, the eigenvalues for the free space boundary condition calculated fr¢&7)Eare
exactly integers and the eigenvalues for half-plane boundary condition calculated frof88Eq.
are exactly half-integers. Furthermore, since

ar
|D(a)|<z,
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TABLE I. Exact and WKB eigenvalues, Dirichlet boundary conditigi¥ 60°.

Exact eigenvalues WKB eigenvalues
v )73 v y73
0.240 100 0.036 081 0.250 000 0.000 000
1.061 291 —0.738 682 1.056 152 —0.739 774
1.347 988 0.404 089 1.352 332 0.353 598
2.007 534 —2.798 184 2.005 562 —2.795198
2.151 363 —0.448 877 2.152 149 —0.480 823
2421224 1.148 104 2.420 612 1.101 099
3.000 689 —6.411 688 3.000 415 —6.410 392
3.034 598 —2.299 160 3.031 866 —2.237 473
3.247 569 0.046 190 3.250 000 0.000 000
3.464 345 2.349 962 3.461 728 2.308 129
4.000 057 —11.542 236 4.000 029 —11.540 810
4.004 708 —5.536 257 4.003 667 —5.541 524
4.088 336 —1.575 254 4.087 239 —1.604 552
4.335 547 0.816 227 4.336 819 0.766 347
4.485 458 4.058 339 4.482 941 4.018 364

from Eqgs.(39) and(40) we find for the Dirichlet boundary condition
m+n<v<m+n+3,
and for the Neumann boundary condition
m+n+i<v<m+n+1,

in agreement with the results of theorem 2.

Limiting cases. Small/ar.  For smalla/v, J, andJ, can be approximated by

N 1 2
Jo=2(v+3) 55/ ta In[8xk’(v+3)]—alIn|a]+a+0(a?),
(41)
J,=2(v+3) g —a In[8kk’'(v+3)]+a Inja|—a+0(a?),
where
2k'a

a=——.
k\v(v+1)

To this approximation the set of eigenvalue equations for the Dirichlet boundary condition on a
plane angular sector, E¢34), becomes

2(v+3) —aln[8xk'(v+3)]+dy(a)—D(a)=(m+3w, m=0,1,...,

2

B

2 2

2(v+3) +aln[8kk'(v+3)]—d(a)=(n+3m, n=0,1,....

By subtracting the above two equations we find
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TABLE Il. Exact and WKB eigenvalues, Dirichlet boundary conditigiy 90°.

Exact eigenvalues

WKB eigenvalues

v ) v n
0.296 584 0.089 456 0.299 781 0.080 958
1.131 248 —0.452 788 1.129 190 ~0.438 011
1.426 512 0.917 647 1.427 775 0.899 504
2.039 575 —1.702 414 2.039 422 ~1.684 193
2.287571 0.216 125 2.287 856 0.213 095
2.480 880 2.667 648 2.487 856 2.648 919
3.009 062 —3.937 847 3.009 528 ~3.919 378
3.146 403 —0.825 595 3.146 022 ~0.818 730
3.408 679 1.533 190 3.408 992 1.523 359
3.495 891 5.437 690 3.495 505 5.417 830
4.001 846 —7.207 836 4.002 111 ~7.187871
4.053 806 —2.576 195 4.053724 —2.565 033
4.284 205 0.332 446 4.284 291 0.330 690
4.470 929 3.789 494 4.470 831 3.777 082
4.499 185 9.222 705 4.499 019 9.201 634

a
2(v+3d) E_B +2a In[8kk'(v+3)]—2¢,(a)+D(a)=(n—m+3).

Substituting for(v+3) from Eq. (39), gives

3 D(a)\|= , 3 D(a)
2 m+n+Z+T 5_'8 +2a In| 8kk m+n+Z+T —2¢,(a)+D(a)
=(n—m+ 3} 7. (42)

In the same limit the set of eigenvalue equations for the Neumann boundary condition on a plane
angular sector, Eq35), becomes

TABLE lll. Exact and WKB eigenvalues, Dirichlet boundary conditigts120°.

Exact eigenvalues WKB eigenvalues

v M v I
0.356 355 0.158 119 0.358 126 0.174 722
1.226 096 —0.134 016 1.219684 —0.090 849
1.476 873 1.536 303 1.480 990 1.538 258
2.123 472 —0.708 205 2.121581 —0.659 142
2.417 310 1.067 192 2.419 379 1.087 689
2.497 681 4.406 617 2.498 460 4.406 798
3.057 603 —1.678 866 3.059 474 —1.634 478
3.327 410 0.488 369 3.326 217 0.525 600
3.486 757 3.648 295 3.488 577 3.657 995
3.499 779 8.787 899 3.499 890 8.787 049
4.023 832 —3.134 253 4.026 620 —3.093 377
4.227 428 —0.248 489 4.225 340 —0.202 646
4.456 604 2.761 217 4.458 635 2.781612
4.498 416 7.777 962 4.498 879 7.784 635
4.499 983 14.671 188 4.499 992 14.669 535
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TABLE IV. Exact and WKB eigenvalues, Dirichlet boundary conditigis60°.

Exact eigenvalues WKB eigenvalues
v )73 v y73
0.919 039 —0.544 092 0.925 416 —0.562 905
1.756 877 0.031 801 1.750 000 0.000 000
1.992 189 —2.755471 1.994 275 —2.762 736
2.612 874 0.907 904 2.611 660 0.862 343
2.960 147 —2.039 005 2.963 345 —2.059 364
2.999 308 —6.405 726 2.999 584 —6.406 754
3.542 794 2.211193 3.545 553 2.160 504
3.880 762 —1.101 735 3.881 148 -1.131761
3.995 194 —5.498 138 3.996 269 —5.510 924
3.999 942 —11.541571 3.999 971 —11.540 469
4.515 746 3.988 468 4.518 469 3.936 896
4.752 602 0.035213 4.750 000 0.000 000
4.980 945 —4.388 250 4.982 818 —4.410 636
4.999 484 —10.408 995 4.999 669 —10.415 666
4.999 995 —18.175 462 4.999 998 —18.173 528

2(v+3) g —a In[8kk'(v+3)]+ ¢y(a)+D(a)=(m+Hm, m=0,1,...,
2(v+3) 2735 +aIn[8kk'(v+3)]—ds(a)=(n+3)m, n=0,1,....

By subtracting these two equations and using @§), we find

5 D(a)
m+n+ Vi

) 5 D(a)
8kk (m+n+ Z— T) _2¢2(a)—D(a)

a
2 5—/3 +2aln

=(n—-m-11 . (43

TABLE V. Exact and WKB eigenvalues, Dirichlet boundary conditiggs 90°.

Exact eigenvalues WKB eigenvalues
v y7s v )73
0.814 655 —0.189 507 0.817 541 —0.183 573
1.597 131 0.795 774 1.595 459 0.782 870
1.955 326 —1.552 890 1.955 664 —1.535754
2.520 877 2.621 752 2.521 225 2.602 671
2.801 149 —0.349178 2.801 527 —0.346 344
2.990 672 —3.886 619 2.990 191 —3.865 543
3.504 197 5.424 529 3.504 590 5.403 516
3.617 052 1.261 783 3.616 648 1.254 866
3.938 056 —2.308 190 3.938 212 —2.297 999
3.998 143 —7.193 804 3.997 875 -7.171821
4.500 819 9.219 426 4.500 985 9.197 701
4.532 032 3.680 927 4,532 113 3.668 644
4.795 768 —0.494 774 4.795 892 —0.492 960
4.984 161 —5.230 456 4.983 978 —5.216 220
4.999 642 —11.499 924 4.999 545 —11.467 714
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TABLE VI. Exact and WKB eigenvalues, Dirichlet boundary conditigi® 120°.

Exact eigenvalues WKB eigenvalues
v y73 v o
0.697 484 0.070 303 0.704 000 0.097 292
1.525224 1.515 624 1.520 686 1.521 887
1.849 263 —0.498 577 1.853 450 —0.454 970
2.502 344 4.403 471 2.501 552 4.404 736
2.598 523 0.963 024 2.596 927 0.988 145
2.935993 —1.528 545 2.934 267 —1.479 765
3.500 201 8.787 553 3.500 110 8.786 850
3.513954 3.625 169 3.511 853 3.638 428
3.715734 0.196 581 3.718 263 0.233 427
3.975043 —2.930 602 3.972 115 —2.998 640
4.500 016 14.671 153 4.500 008 14.669 517
4.501 592 7.774 668 4.501 125 7.782 170
4.547 584 2.673 862 4.545 440 2.697 962
4.834 680 —0.881 895 4.836 155 —0.838 295
4.990 638 —4.876 280 4.988 412 —5.011 801

We note that Eq942) and(43) are independent af. This allows us to solve these equations for
a by performing a search in one dimensi@s opposed to two dimensions when we need to find
v as wel) and then use Eq$39) and(40) to determinev.

Large a.As a—x, D(a)— w/4+0(e” ") and asa— —, D(a)— — w/4+ O(e’”|a|). By
substituting these limiting values @f(a) in the eigenvalue equations, E¢84), (35), (37), and
(38), we find that am—« (u positive), Egs.(34) and(35) reduce to Eq(38), and asa— —© (u
negative, Egs. (34) and (35) reduce to Eq(37). We already pointed out that the values wof
calculated from EQq(38) are half-integers and those calculated from BY) are integers. This
shows that for large positive values afthe eigenvaluesy, approach half-integers and for large
negative values od they approach integers. This can be seen in Fig. 5 and Tables I-VI.

IV. NUMERICAL CALCULATION OF THE EIGENVALUES

The eigenvaluegy,u), must be calculated by simultaneously requiring thatdiie) solution
is periodic with period 2z and the® () solution satisfies the boundary conditions. To do this, we
used the following method: start with an initiaJ then use the shooting metH8do find . for
Ed. (3) andu, from Eq.(4). Vary v and find a new pair ofw,u,). If the difference betweep.,
and u,, increases, vary in the opposite direction and find another pair(afy,u,). Continue the
process until the difference betwegn and ., is small to a desirable limit. By using this method,
we are able to findv and u accurate up to six decimal places. The WKB eigenvalues were
calculated by applying the Newton—Raphson iteration to the set of equations given biB#gs.
and(35). Reference 14 has efficient routines for the calculation of elliptic integrals. These routines
have been used in the WKB calculation of eigenvalues. For large valuearad small values of
a/v, as was pointed out earlier, one does not need to solve the above set of the eigenvalue
equations. Instead, for the Dirichlet boundary conditiooan be determined from E¢42) and
then Eq.(39) can be used to calculate for the Neumann boundary conditiancan be determmed
from Eq.(43) andv can be calculated from E40). It should be pointed out that in the Newton—
Raphson iteration using Eq&34) and (35) the derivatives are respectively calculated from their
approximate form for smat/v [Egs.(42) and(43)]. It is much easier to calculate derivatives of
the latter equations, yet the convergence rate is equally good. Tables I-VI list the eigenvalues for
Dirichlet and Neumann boundary conditions on a plane angular sector with corner angles of 60°,
90°, and 120°.
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APPENDIX A: SPECIAL EIGENVALUES

Although, as pointed out in the text, the eigenvaluedgfsubject to the even Neumann and
odd Dirichlet boundary conditions are of no mterest in this paper, for completeness we tabulate
these eigenvalues for a 90° PAS along with the eigenvalués,dbr a half-plane in Table VII.
Note that the eigenvalues for the odd Dirichlet and even Neumann cases are all integers and those
for the half-plane are half-integers. It should be pointed out that both odd Dirichlet and even
Neumann boundary conditions on a half-plane result in the same set of eigenvalues.

TABLE VII. Special eigenvalues ad for a 90° PAS and a half-plane.

Even Neumann Odd Dirichlet Half-plane

v I v I v M

0.000000 0.000 000 1.000000 0.000 000 0.500000 0.000 000
1.000 000 —0.500 000 2.000 000 —1.500 000 1.500 000—-0.866 025
1.000 000  0.500 000 2.000 000 1.500 000 1.500000 0.866 025
2.000 000 —1.732 051 3.000 000 —3.872 984 2.500 000—2.645 751
2.000000  0.000 000 3.000000 0.000 000 2.500 000 0.000 000
2.000000 1.732051 3.000000 3.872984 2.500000 2.645751
3.000 000 —3.949 490 4.000 000 —7.190416 3.500 000—5.431 181
3.000 000 —0.949 490 4.000 000 —2.190 416 3.500 000—1.415017
3.000000 0.949490 4.000 000 2.190416 3.500000 1.415017
3.000000 3.949 490 4.000 000 7.190416 3.500000 5.431181
4.000 000 —7.211 103 5.000 000—11.489 126 4.500 000—9.221 070
4.000 000 —2.645 752 5.000 000 —5.196 152 4.500 000—3.737 893
4.000000 0.000 000 5.000000 0.000 000 4.500000 0.000 000
4.000000 2.645752 5.000 000 5.196 152 4.500 000 3.737 893
4.000000 7.211103 5.000000 11.489126 4.500000 9.221070

APPENDIX B: THE EXACT EIGENFUNCTIONS
1. The even Dirichlet case

a. The ® equation
According to Refs. 8 and 4, the solution of E) subject to the boundary conditions

O(7)=0 Dirichlet boundary condition
®'(0)=0 even solution

is given by the series
O(9)= > A, cog2m— ).
m=0

Substituting the above series in E) results in the recurrence relation
An-10mTAnBmt Antr1¥Ym=0, (B1)
where

k[ (4m—3)(4m—5)
Am=g 4

v(v+1)|,
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_ (4m—1)? [ k2 ) v(v+1)k?

e I Rl A S
2

Ym:% (4m+1{:4m+3)_v(y+1).

The above is a three term recurrence relation which by a rather straightforward manipulation can
be written in the form of a continued fraction

n
A a
m1__ Fm, m (B2)
Am Xy Ym+1
Bm+l+ Am+1
Am+1 Bm+2+.“
Am+2
or
O
Ami1 __ &_’_ Ym (B3)
Am Ym am—-1
ﬁm*l_’_ Ym-1
Ym-1 Bm—2+‘“
Ym-2

The above continued fractions converge rather fast, so approximately 20 terms are enough to
achieve an accuracy of up to eight decimal places. Following Re%, dis assumed to be unity

and Eq.(B2) is used to calculatd,. ThenA_,; is assumed to be unity and E®3) is used to
calculateAy again. TheA, found by starting af_ 4, is set equal to thé calculated the first time

and Eq.(B3) is used to scalé_; throughA_,, Finally, all the coefficients are normalized to
make

0,(0)=1.

b. The ® equation

The two independent solutions of E@) satisfying the even boundary conditions
®'(0)=0, d'(m)=0

are given by

<I>e1<¢>=mZ:0 Bum COS e,

and

d>e2<<p)=mE:O Boms1 COS2m+1)¢.

The recurrence relations for the first solution are
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12

v(v+1)k'? K
_ +BZT(2—V(V+1)):O,

0 2 M

BO(M) +Bz(4< K 1) + V(VH)K'Z—M) 1B, K—’2(12— W(v+1))=0
2 2 2 4 '
and

Bom-2aomt BomBamt Boms2Y2m=0, m=2.
The recurrence relation for the second solution is

Bom-1@2m+1+Bomr1B2m+ 1T Bomi3¥om1=0, m=1,

where
K/Z
Wom= T[(Zm—Z)(Zm—l)— v(v+1)],

) K'? v(v+1)k'?
on=| 2m? 1| M ®4)

12
yzmz%[(zm 2)(2m+1)— p(r+1)].

The continued fraction for the first solution is

Yom
Bom-2 Bo a;
o= = . m=2, (B5)
Bom Aom Yom+2
/32m+2+ Aom+2
aomr2  Bomra
m Zemte .
Aom+4
and for the second solution is
Yom+1
Bom-1 Bom+1 Aomy1
e e ~ : (B6)
Bom+1 Aom+1 Y2m+3

Bom+3 Aom+3
+

amiz  Bomis
—+ cee

A2m+5

It was decided that it would be accurate enough to asBipéo be unity and use E@B5) along
with the first two recurrence relations to fild, throughB,. Similarly, B,; is assumed to be unity
and Eq.(B6) is used to determinB3q throughB;. The coefficients are then normalized to make

P (0)=1.
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2. The odd Neumann case

a. The O equation

The solution of Eq(3) subject to the boundary conditions

®'(7)=0 Neumann Boundary condition

®(0)=0 odd solution

®o(ﬂ)=r§0 A, sin2m—%)9.

The recurrence relation and the expression for the continued fraction for this equation are the same
as for the Dirichlet cas¢Egs. (B1), (B2), (B3)]. The coefficients are determined in the same
manner, except that now they are normalized to make

0,(0)=1.
b. The ® equation
The two independent solutions of E@) satisfying the odd boundary conditions
®(0)=0, P(w)=0

are given by

o

<1>01<so)=mE=O Bam Sin 2ng,

and

e}

<I>oz<<p>=mE:0 Bomi1 SIN2M+1)e.

The recurrence relation for the first solution is

Bom—2@omt+ BomBomT Boms2¥2m=0, Bp=0

and for the second solution is

g

Bom-1@m+11 Bom+1Bom+ 1+ Boms3¥om+1=0, m=1,

K'? ) 3v(v+1)k'? K'?
2

2 - +B3T(6—V(V+l))=0,

wherea,, B,m andy,, are given by Eq(B4) and the continued fractions are given by E@®5),
and(B6). The coefficients are determined in the same way as the coefficients for the Dirichlet case
and then they are normalized to make

dL0)=1.
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