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In this paper the virtual source technique is used to compute scattering of a plane wave from a peri-

odic ocean surface. The virtual source technique is a method of imposing boundary conditions

using virtual sources, with initially unknown complex amplitudes. These amplitudes are then deter-

mined by applying the boundary conditions. The fields due to these virtual sources are given by the

environment Green’s function. In principle, satisfying boundary conditions on an infinite surface

requires an infinite number of sources. In this paper, the periodic nature of the surface is employed

to populate a single period of the surface with virtual sources and m surface periods are added to

obtain scattering from the entire surface. The use of an accelerated sum formula makes it possible

to obtain a convergent sum with relatively small number of terms (�40). The accuracy of the tech-

nique is verified by comparing its results with those obtained using the integral equation technique.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3613707]
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I. INTRODUCTION

The problem of scattering of waves from periodic surfa-

ces, especially sinusoidal surfaces has attracted a fair amount

of interest. One of the reasons for this is that the simple na-

ture of the boundary surface offers rather simple mathemati-

cal treatment; the other reason is that scattering from a

periodic surface results in strong scattering in directions

other than specular. Such non-specular returns are important

in studying scattering from traveling ocean waves in under-

water acoustics and from diffraction gratings in optics. This

problem was first treated by Lord Rayleigh1 who used the

periodic nature of the surface and the boundary conditions

on it to reduce the problem to a set of algebraic equations for

the so-called reflection coefficients. He then proceeded to

find these coefficients by an approximate method. Through-

out the years many authors have treated this problem by

using approximate methods like perturbation theory, when

the surface height is small, and physical optics (Kirchhoff

approximation), when the wavenumber is large compared

with the curvature of the surface.

Uretsky2 was the first to provide a solution based on the

Helmholtz-Kirchhoff integral, but like Rayleigh’s solution

his solution fails as a result of some inadequacies, which do

not seem to be understood or appreciated. According to Hol-

ford,3 the problem centers on the inversion of infinite sys-

tems of algebraic equations. The first rigorous solution of a

related problem of scattering from a periodic surface with

impedance boundary conditions was provided by Urusov-

skii.4–6 However, the solution for a pressure-release bound-

ary condition can only be obtained from Urusovskii’s

solution by a limiting procedure, which reduces to Uretsky’s

solution and has similar problems. The first rigorous solution

of scattering of a plane wave from a pressure-release bound-

ary condition (Dirichlet boundary condition) was provided

by Holford,3 who solved the Helmholtz-Kirchhoff integral

equation for the unknown pressure and its normal derivative

on the boundary surface. The application of the integral

equation technique to an infinite boundary results in an infi-

nite set of algebraic equations. Uretsky solved these equa-

tions by the method of reduction, which is essentially a

process of truncation and matrix inversion. However,

according to Holford this method is only valid for systems of

algebraic equations resulting from integral equations of the

second kind. For systems of algebraic equations resulting

from integral equations of the first kind, which Uretsky

applied this technique to, no theoretical justification exists.

That is, there is no guarantee that the solution obtained this

way converges as the number of equations in the system is

increased nor is there any guarantee that the solution con-

verges to the correct solution. Holford solved these equations

by the same method, but in doing so he had to formulate the

problem in terms of an integral equation of the second kind.

In this paper, we use the virtual source technique to

provide an exact solution for scattering of a plane wave

from a periodic ocean surface. The virtual source tech-

nique, also known as the method of superposition, is a

method of imposing boundary conditions on a surface (or

interface) by using virtual sources of unknown complex

amplitudes, which are determined by applying the bound-

ary conditions. The functions representing the fields due to

the virtual sources must satisfy the wave equation and the

radiation condition. For this purpose, it is convenient to

mathematically represent them by the environment Green’s

functions.

The virtual source method has widely been used in tar-

get scattering computations, particularly when the target is

located in a waveguide.7–10 And more recently, it has been

used to model just the propagation in complicated
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waveguides11,12 without a target. In this paper we apply the

virtual source technique to an infinite periodic surface sat-

isfying the pressure-release or Dirichlet boundary condi-

tion. Because of the infinite extent of the boundary surface,

in principle an infinite number of sources are required to

satisfy the boundary condition. However, it turns out that

the very periodic nature of the boundary enables the solu-

tion to be constructed over one period. But to obtain the

solution for the entire boundary, an infinite number of such

solutions must be added. This construction keeps the num-

ber of unknowns, and consequently the number of equa-

tions the same as the number of virtual sources, n, in a

single period.

We seek convergence by determining how many surface

periods should be summed. The quantity inside the sum is a

n� n matrix containing free space Green’s functions. We

use an accelerated sum formula, which converges to the cor-

rect solution for relatively small (�40) number of terms. The

convergence properties of this formula are established in

Ref. 13. In this regard our approach is very different from

those of Uretsky and Holford, who seek convergence by

determining how many algebraic equations should be used.

The virtual source technique provides a rather simple solu-

tion to the problem of scattering from a periodic surface, as

it only uses the free space Green’s functions to construct the

solution.

The outline of this paper is as follows. In Sec. 2, the

virtual source solution is derived. In Sec. 3, the nature of

the solution of the wave equation for a periodic surface is

discussed and the method of obtaining the solution using

the virtual source technique is described. In Sec. 4, the

method is applied to a sinusoidal surface and its validity is

demonstrated by comparing its results with those of Hol-

ford’s integral equation solution. The paper is concluded in

Sec. 5.

II. THE VIRTUAL SOURCE SOLUTION FOR A
PERIODIC SURFACE

The geometry of the problem is shown in Fig. 1, where

a plane wave is incident on a pressure-release periodic sur-

face. The surface, which is given by z ¼ f xð Þ; is uniform in

the y direction. This problem is solved in two-dimensions

and the solution is denoted by p(x, z; k), where k is the free-

space wavenumber. Because the boundary is independent of

the y coordinate, it follows immediately that for a non-pene-

trable surface the solution in three-dimensions can be

obtained from the 2-D solution by

p x; y; z; kð Þ ¼ eiky sin bp x; z; k cos bð Þ;

where b is the angle that the incident wave makes with the

xz plane.

Due to the periodic nature of the surface, the incident

field is scattered exactly the same way from two points sepa-

rated by a surface wavelength, K. If the path length differ-

ence between rays scattered from these two points is a

multiple of the acoustic wavelength, k, rays interfere con-

structively. This can be expressed by the well-known grating

equation, which can be obtained by taking the path length

difference between rays k1q1 and k2q2

cos hl ¼ cos h0 þ
k
K

l: (1)

In the above equation, h0 represents the direction of the inci-

dent wave and hl represents the directions for which the

wave scattered from the individual periods of the surface

will be in phase and will reinforce each other, giving rise to

the modes of the scattering problem.

We will use the virtual source technique to impose the

pressure-release boundary condition on the periodic sur-

face S, represented by f(x). For this purpose we place vir-

tual sources on a surface S’, which is exactly like S, but

translated slightly below it. The field due to each virtual

source is represented by the environment Green’s function

with an unknown complex coefficient, which will be deter-

mined by satisfying the boundary condition at points on S,
referred to as nodes and shown as dots on the boundary sur-

face in Fig. (1). The Green’s function for the environment

is given by

G r; r0ð Þ ¼ i

4
H

1ð Þ
0 k r� r0j jð Þ; (2)

where r¼ (x, z) is a field point, r0 ¼ (x0, z0) a source point,

and H
1ð Þ

0 is the Hankel function. The total field due to the

incident field and the field produced by the virtual sources at

point r is given by

w rð Þ ¼ winc rð Þ þ
XN

n¼1

X1
m¼�1

G r; r0nþmN

� �
QnþmN: (3)

Here N represents the number of virtual sources in one pe-

riod of the surface, m represents the number of periods and

Qi represents the unknown complex source amplitude

located at r0i : winc is the incident plane wave given by

winc rð Þ ¼ eik�r ¼ eik x cos h0�z sin h0ð Þ: (4)

To determine the coefficients Q, we apply the pressure-

release boundary condition w rp 2 S
� �

¼ 0: Then Eq. (3)

becomes,

winc½xp;fðxpÞ� þ
XN

n¼1

X1
m¼�1

G½xp; fðxpÞ; x0nþmN; f
0ðx0nþmNÞ�

� QnþmN ¼ 0; (5)

FIG. 1. The geometry for the scattering problem.
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where r0n 2 S0: Since the surface S is periodic with period K,

f(xþK)¼ f(x), the incident field has the property

winc xþ K; f xþ Kð Þ½ � ¼ eikK cos h0winc x; f xð Þ½ �; (6)

which shows that it must be multiplied by eikK cosh0 as one

moves one surface wavelength to the right. Similarly, since

S’ is also periodic with period K; x
0
nþmN ¼ x

0
n þ mK and

f0 x
0
nþmN

� �
¼ f0 x

0
n þ mK

� �
¼ f0 x

0
n

� �
: Due to the infinite, peri-

odic nature of the surface, the source amplitudes for two

sources a distance K apart must also satisfy

Q x0 þ K; f0 x0 þ Kð Þ½ � ¼ eikK cos h0 Q x0; f0 x0ð Þ½ �:

Using this property, we can write

QnþmN ¼ eimkK cos h0 Qn:

Using these arguments, Eq. (5) can be written as

winc xp; f xp

� �� �
þ
XN

n¼1

Cm
pnQn ¼ 0; (7)

where

Cm
pn¼

X1
m¼�1

G xp;f xp

� �
;x
0

nþmK;f x
0

n

� �h i
eimkKcosh0 : (8)

Let the position of all the nodes on the surface be denoted by

a vector r¼ [x, f(x)] of length n, and the position of sources

be denoted by a vector of the same length r’¼ [x’, f(x’)].
From Eq. (7) the source amplitudes can be obtained from the

following equation written in vector-matrix notation

Q ¼ � Cm½ ��1winc: (9)

In the above equation winc is a column vector of length n
containing the incident field at n nodal points, Q is a column

vector of length n containing the complex source amplitudes

and Cm is an n� n matrix. Substitution of Q in Eq. (3) gives

the field everywhere in the medium. The Green’s function in

Eq. (8) is given by Eq. (2), which gives

Cm
pn ¼

i

4

X1
m¼�1

H
1ð Þ

0 krm
pn

� �
eimkK cos h0 ; (10)

where

rm
pn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp � x0n þ mK

� �� �2þ fp � f
0

n

� �2
q

:

It is not practical to compute C using Eq. (10) since the sum

over the Hankel function converges very slowly and requires

m to be very large. To deal with this, we derive an acceler-

ated sum formula below.

A. An accelerated sum formula for Eq. (10)

The formula that we are about to derive is due to Linton,13

which is included here for completeness. Consider the sum

G X; Zð Þ ¼ i

4

X1
m¼�1

H
1ð Þ

0 krmð Þeimbd; (11)

where

X ¼ xp � x
0

n; Z ¼ fp � f
0

n; b ¼ k cos h0

rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X � mdð Þ2þZ2

q
:

Equation (11) can be expressed as an accelerated sum by

using the Poisson sum formula,

X1
m¼�1

eimu ¼ 2p
X1

m¼�1
d uþ 2mpð Þ; (12)

and an integral representation of the Hankel function (Ref. 13):

H
1ð Þ

0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p� �
¼ � i

p

ð1
�1

c�1e�kc bj je�ikatdt; (13)

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
t2 � 1
p

¼ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p

: Using the above representa-

tion in Eq. (11) with a¼X�md and b¼Z gives

G X; Zð Þ ¼ 1

2

ð1
�1

c�1e�kc Zj je�iktX
X1

m¼�1
eimd ktþbð Þdt; (14)

where the sum and the integral signs have been reversed.

According to the Poisson sum formula

X1
m¼�1

eimd ktþbð Þ ¼
X1

m¼�1
d d ktþ bð Þ þ 2mp½ �:

Substituting this in Eq. (14), and again reversing the sum

and the integral we get

G X;Zð Þ¼1

2

X1
m¼�1

ð1
�1

c�1e�kc Zj je�iktXd d ktþbð Þþ2mp½ �dt:

The sifting property of the d function reduces the above

equation to

G X; Zð Þ ¼ 1

2d

X1
m¼�1

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mpþbð Þ2�k2

p
Zj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mpþ bð Þ2�k2

q eikX mpþbð Þ;

where p¼ 2p/d. Letting bm¼mpþ b and cm �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

m � k2

q
;

we finally get the accelerated form of Eq. (10)

G X; Zð Þ ¼ 1

2d

X1
m¼�1

e�cm Zj jeibmX

cm

: (15)

The exponential in the above sum ensures its rapid conver-

gence. Other properties of the above equation are discussed

in Ref. 13.

III. THE NATURE OF THE SOLUTION OF THE WAVE
EQUATION FOR A PERIODIC SURFACE

Scattering of a plane wave from a periodic surface can

be described by the following expression due to Rayleigh:
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p x; zð Þ ¼ eik a0x�c0zð Þ þ
X1

n¼�1
Rneik anxþcnzð Þ; (16)

where an¼ cos hn and cn¼ sin hn. According to the above

equation (see Fig. 2), below the hollows of the boundary, the

scattered field consists of discrete plane waves of amplitude

Rn, a finite number of which (cn real) propagate from the

boundary, while the remainder (cn purely imaginary) corre-

spond to surface waves since their amplitudes decay expo-

nentially in the z direction. According to Eq. (1) propagating

solutions are obtained only when k/K � 1 and l¼ 0. This

means that there is always a propagating wave in the specu-

lar direction (l¼ 0) regardless of the ratio of the radiation

wavelength to the surface wavelength, k/K. However, propa-

gating waves in directions other than specular can only occur

when k/K � 1. The coefficients Rn in Eq. (16) may be

thought of as a set of transformation coefficients that carry

the energy of the incident wave in the direction h0 into a set

of outgoing waves in the directions hn. This concept can be

used to define a scalar product and derive an expression for

the conservation of energy for a surface with no attenuation

(Ref. 2)

X
cn real

cn

c0

Rnj j2¼ 1; (17)

where it is assumed that the amplitude of the incident wave,

R0¼ 1. Rayleigh used Eq. (16) to solve the problem of scat-

tering of a plane wave from a sinusoidal surface. He did this

by setting the left hand side of the above equation to 0 on the

boundary and employing the periodicity of the surface to

obtain a set of algebraic equations from which he determined

the first few coefficients Rn by successive substitutions. Ray-

leigh’s solution, however, is only an approximation, as

Eq. (16) is not valid within the hallows of the boundary,

f xð Þ � z < fmaz; where one would expect to find both up-

and down-going waves, rather than a single set of down-

going waves as in Eq. (16). An interesting discussion on the

validity of the Rayleigh’s solution is given in Ref. 3.

The integral equation technique in Ref. 3 and the virtual

source solution described in this paper, of course, solve the

problem exactly and the solution is valid everywhere in the

computational domain. These solutions also satisfy conser-

vation of energy described by Eq. (17). The virtual source

FIG. 2. Scattering of a plane wave from a periodic surface.

FIG. 3. This figure shows how energy is distributed among various propa-

gating modes for a plane wave scattered from a sinusoidal surface. The num-

bers inside the brackets represent the order of the scattered mode followed

by its relative amplitude, cn/c0|Rn|2.

FIG. 4. Comparison between the integral equation solution (solid lines) and

the virtual source solution (small circles) of scattering of a plane wave from

a sinusoidal surface as function of the ratio of surface height to surface

wavelength. In the above figure, the wavelength of the incident plane wave

is equal to the surface wavelength, resulting in two propagating modes,

l¼�1 and l¼ 0. Each panel is for a different angle of incidence. The top

curves represent the normalized intensity for mode l¼ 0, which corresponds

to the specular reflection. Note that when the surface is flat (H/K¼ 0), the

reflected energy is entirely in the specular direction. As the surface rough-

ness increases, the off-specular mode, l¼�1, begins to contribute to the

total scattered energy. But at any surface roughness, the sum of the energy

from these two modes is one, according to Eq. (17).

686 J. Acoust. Soc. Am., Vol. 130, No. 2, August 2011 Ahmad T. Abawi: Scattering from periodic surfaces

Downloaded 09 Aug 2011 to 209.242.155.2. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



method computes the total field, which is composed of all prop-

agating modes. Each component of the propagating modes, Rn

is computed by projecting the total field onto the propagating

angles determined by Eq. (1). In Fig. (3) we computed

cn=c Rnj j2 for the four propagating modes that result in scatter-

ing of a plane wave from a sinusoidal surface. In this case, the

incident field is at 75	 and the surface is represented by

f xð Þ ¼ 0:09 cos
2px

K

	 

;

where in the above K, the surface wavelength is 2p and the

wavelength of the incident field is 0.5K. The numbers inside

the brackets in Fig. (3) represent the order of the scattered

mode followed by its relative amplitude, cn=c0 Rnj j2: The

sum of the relative amplitudes for all the modes equals 1 in

accordance with Eq. (17).

IV. COMPARISON WITH THE INTEGRAL EQUATION
SOLUTION

In this section we benchmark the solution of scattering

of a plane wave from a sinusoidal surface against the integral

equation solution obtained by R. Holford (private communi-

cation). The surface in these benchmark solution is given by

f xð Þ ¼ H cos
2px

K

	 

;

where H is the surface amplitude and K is its wavelength. In

all of the computations reported here we use 60 sources per

acoustic wavelength and use the projection method

described in the previous section to compute the components

of the propagating modes as a function of H/K. The latter is

a measure of surface roughness and is used as an independ-

ent variable in these computations.

In Fig. (4) we show comparisons between the integral

equation method and the virtual source method for each nor-

malized propagating mode intensity. In this case k¼K and

the computations are carried out for four incident angles. For

this ratio of the acoustic wavelength to surface wavelength,

Eq. (1) allows two propagating modes: l¼�1 and l¼ 0. The

top curves represent the normalized intensity for mode l¼ 0,

which corresponds to the specular reflection. Note that when

the surface is flat (H/K¼ 0), the reflected energy is entirely

in the specular direction. As the surface roughness increases,

the off-specular mode, l¼�1, begins to contribute to the

total scattered energy. But at any surface roughness, the

sum of the energy from these two modes is one, according to

Eq. (17).

In Fig. 5 we repeat the same computations as in Fig. 4,

but for higher frequency. In the this case the wavelength of

the incident plane wave is half of the surface wavelength,

resulting in four propagating modes, l¼�3, �2, �1,0 for

incident angles 30	, 45	, and 60	 and l¼�2, �1, 0,1 for

FIG. 5. Comparison between the integral equation solution (solid lines) and

the virtual source solution (small circles) of scattering of a plane wave from

a sinusoidal surface as function of the ratio of surface height to surface

wavelength. In the above figure, the wavelength of the incident plane wave

is half the surface wavelength, resulting in four propagating modes: l¼�3,

�2, �1,0 for incident angles 30, 45 and 60	 and l¼�2, �1, 0, 1 for incident

angle 75	. Each panel is for a different angle of incidence. The curves that

have values of one at H/K¼ 0 correspond to the mode l¼ 0. The other

modes have not been labeled. Note that the off-specular modes begin to con-

tribute to the total scattered energy as the surface roughness increases; and

at any surface roughness the sum of the energies of all the propagating

modes is one, according to Eq. (17).

FIG. 6. Comparison between the integral equation solution (solid lines) and

the virtual source solution (small circles) of scattering of a plane wave from

a sinusoidal surface as function of the ratio of surface height to surface

wavelength. In the above figure, the wavelength of the incident plane wave

is a quarter of the surface wavelength, resulting in eight propagating modes:

l¼�7, �6, �5, �4, �3, �2, �1, 0 for an incident angle of 30	, l¼�6, �5,

�4, �3, �2, �1, 0, 1 for incident angles of 45	 and 60	 and l¼�5, �4,

�3, �2, �1, 0, 1, 2 for an incident angle of 75	. The curves that have values

of one at H/K¼ 0 correspond to the mode l¼ 0. The other modes have not

been labeled. Note that the off-specular modes begin to contribute to the

total scattered energy as the surface roughness increases; and at any surface

roughness the sum of the energies of all the propagating modes is one,

according to Eq. (17).
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incident angle 75	. Note that the off-specular modes begin to

contribute to the total scattered energy as the surface rough-

ness increases; and at any surface roughness the sum of the

energies of all the propagating modes is one, according to

Eq. (17).

In Fig. (6), we repeat the computations for the case

when k¼ 0.25K. in this case, Eq. (1) allows eight propagat-

ing modes: l¼�7, �6, �5, �4, �3, �2, �1, 0 for an inci-

dent angle of 30	, l¼�6,�5,�4,�3,�2,�1, 0, 1 for

incident angles of 45	 and 60	 and l¼�5, �4, �3, �2, �1,

0, 1, 2 for an incident angle of 75	. Again, the contribution

from off-specular angles start when H/K is non-zero. How-

ever, conservation of energy is satisfied for all values of H/

K. In the above figures, individual modes have not been la-

beled to save space. However, our goal in presenting these

results is to show that the virtual source solution produces

identical results to those obtained from the integral equation

solution for all propagating modes and a wide range of inci-

dent angles.

V. CONCLUSIONS

In this paper we solved the problem of scattering of a

plane wave from a periodic surface satisfying the pressure-

release boundary condition using the virtual source tech-

nique. The invariance of the surface in the y coordinate

allowed us to solve a three-dimensional scattering problem

in two-dimensions and thus mathematically represented the

virtual sources by the two-dimensional, free space Green’s

function with unknown complex amplitudes. The amplitudes

of the virtual sources were determined from the boundary

conditions.

In principle, satisfying boundary conditions on an infi-

nite surface requires an infinite number of sources. In this

paper, we employed the periodic nature of the surface to

populate a single period of the surface with virtual sources

and added m surface periods to obtain scattering from the

entire surface. The use of an accelerated sum formula

enabled us to obtain a convergent sum with relatively small

number of terms (�40).

We applied this technique to compute scattering from a

sinusoidal surface as a function of surface amplitude to sur-

face wavelength for a variety of incident angles and frequen-

cies, k/K. To demonstrate the accuracy of our solution, we

compared our solutions with those obtained by R. Holford

(private communication) using the integral equation tech-

nique and found out that the two solutions are essentially

identical for all cases considered.

The technique described in this paper provides a simple

way to obtain an independent benchmark solution for com-

puting scattering from a periodic pressure-release surface.

Extension of the virtual source technique to compute scatter-

ing from a rigid periodic surface is a topic to be explored in

the future.
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