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In high density packaging of integrated circuits it is common to make electric contact
between two circuit boards via solder joints. The electric contact is made by pads on the
surface of each board and the solder joints. One of these joints is shown below. Since the
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solder remains in liquid form for many other fabrication processes to follow, it is desirable to
know the equilibrium distance between the boards, h, and the maximum radius of the joint,
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r, as a function of the volume of the solder. Physically, the solder joint at equilibrium has
minimum total energy . This is a variational problem with boundary conditions, r(0) = ra

, r(h) = rb, and with the constraint that the volume of the solder V remains constant. We
have solved this problem by two different methods which are described here.

Method 1:

The most straight forward way to do this problem is to solve the Euler- Lagrange equation
subject to the constraint that the volume remains constant. According to Euler’s theorem,
minimizing the total energy E of the solder joint subject to the constraint that its volume
V remains constant, is equivalent to minimizing K = E + λV with no constraint. Here, λ is
a Lagrange multiplier. The total energy is given by:

E = ESolder + Eτ + EW

where,

ESolder = potential energy of the solder =
∫ h

0

gρzπr2dz

Eτ = energy of surface tension =
∫ h

0

2πτrdS

=
∫ h

0

2πτr

√

1 + r′2dz

EW = potential energy of W =
∫ h

0

Wdz

Where g is the acceleration of gravity, ρ is the density of solder, τ is the surface tension

coefficient, r = r(z) through-out this discussion ,r′ ≡
dr

dz
and r′′ ≡

d2r

dz2
.

Then we can write the total energy:

E =
∫ h

0

(gρπzr2 + 2πτr

√

1 + r′2 + W )dz (1)

with the constraint:

V olume =
∫ h

0

πr2dz = V = constant (2)

According to Euler’s theorem we minimize K, (δK = 0):

K = E + λV

=
∫ h

0

(gρπr2 + 2πτr

√

1 + r′2 + W + λπr2)dz

=
∫ h

0

Hdz
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H = gρπr2 + 2πτr

√

1 + r′2 + W + λπr2

this implies that H must satisfy the Euler-Lagrange equation:

∂H

∂r
−

d

dz
(
∂H

∂r′
) = 0

Substituting for H in the above equation we get:

brr′′ = (1 + r′
2
){b + 2r(za + πλ)

√

1 + r′2} (3)

where, a ≡ gρπ and b ≡ 2πτ . Subject to the boundary condition: r(0) = ra, r(h) = rb.

Procedure for solving Equation 3: Equation 3 is a two point boundary value problem

with an unknown Lagrange multiplier λ. Among many different methods that can be used
to solve this problem are the shooting method and the relaxation method. Because of its
relevance to this problem, the shooting method has been used according to the following
algorithm:

Algorithm: Given: Volume=V
Want the solution to satisfy:
r(0) = ra, r(h) = rb.
Step 1: Choose h.
Step 2: Make Equation 3 an initial value problem with initial values:
r(0) = ra,
r′(0) = α (a guessed value).
Step 3: Adjust λ (by shooting method) such that r(h) = rb.
Step 4: Calculate the volume using Equation 2. If it is equal to V
go to Step 5 otherwise go to Step 2 and choose another α.
Step 5: Calculate the energy using Equation 1.
Step 6: If a minimum is reached store h and r(z) STOP; else go to Step 1.
End.
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Method 2:

From experience we know that the shape of a solder joint closely resembles a doubley trun-
cated sphere. Therefore, it is possible to write r(z) in terms of a function that describes a
doubley truncated sphere plus a sum of unknown coefficients times some known functions
that vanish on the boundary, i.e

r(z) =

√

r2
a − z2 +

z

h
(r2

b − r2
a + h2) +

∞
∑

n=0

Cn sin
nπz

h
(4)

where, ra, rb and h have been defined above. The coefficients Cn are determined such that
the total energy given by (Eq. 1) is a minimum subject to the constraint given by (Eq. 2).
It is desirable to substitute (Eq. 4) in (Eq. 2), eliminate one of the unknown coefficients
Cn in favor of the known quantity V , and find the remaining n − 1 coefficients. Because of
the complicated nature of (Eq . 4), this is hard to do. Instead, we introduce a Lagrange
multiplier ξ and minimize

K = mgh +
∫ h

0

(gρπzr2 + 2πτr

√

1 + r′2)dz + ξ

∫ h

0

πr(z)2
dz (5)

with no constraints. The procedure to do this can be summarized as follows:

Algorithm:

Given: Volume=V
Step 1: Choose h.
Step 2: Choose ξ.
Step 3: Find Cn for n = 1, 2, .... by minimizing K (Eq. 5)
Step 4: Calculate the volume using Equation 2. If it is equal to V
store h and go to Step 1 otherwise go to Step 2
Step 5: For each group of Cn and h calculate the energy (Eq. 1)
Step 6: The h corresponding to the minimum energy is the desired solution.
End.

By using the above methods, we have calculated h and r(z) for a number of different
cases. The results agree well with the experimental values. We have also found that the
results obtained by each method agree with each other ,as they should. Because method 1
uses the shooting method, numerical problems occur at times, especially when bad initial
guesses are made. Method 2, on the other hand, is numerically stable for any initial guess
and is therefore recommended for interactive use.
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The Shooting Method

The shooting method is a method for solving two point boundary value problems. The
”standard” two point boundary value problem has the following form: We desire the solution
of a set of N coupled first-order ordinary differential equations, satisfying n1 boundary
conditions at the staring point x1, and a remaining set of n2 = N − n1 boundary conditions
at the final point x2. The shooting method exactly implements multidimensional Newton-
Raphson method. It seeks to zero n−2 functions of n2 variables. The functions are obtained
by integrating N differential equations from x1 to x2. At the starting point x1 there are N

starting values yi to be specified, but subject to n1 boundary conditions. Therefore there
are n2 = N −n1 freely specifiable starting values. Let us imagine that these freely specifiable
value are the components of a vector V that lives in a vector space of dimension n2. Then
the user, knowing the functional form of the boundary conditions at x1

B1j(x1, y1, y2, ..., yN) = 0 j = 1, 2, ..., n1

and at x2

B2k(x2, y1, y2, ..., yN) = 0 k = 1, 2, ..., n2

can write a subroutine which generates a complete set N starting values y, satisfying the
boundary conditions at x1, from an arbitrary vector V in which there are no restrictions on
the n2 component values. In other words

yi = yi(x1; V1, V2, ..., Vn2
) = 0 i = 1, 2, ..., N

call this subroutine LOAD.
Given a particular vector V, a particular y(x1) is thus generated. It can then be turned

into a y(x2) by integrating the ODE’s to x2 as an intial value problem. Now at x2 let us
define a discrepancy vector F, also of dimension n2, whose components measure how far
we are from satisfying the n2 boundary conditions at x2. Let us use the right-hand side of
Equation 2,

Fk = B2k(x2,y) k = 1, ..., n2

Write a subroutine SCORE which uses Equation 2 to convert an N -vector of ending values
y(x2) into n2-vector of discrepancies F. We want to find a vector value of V which zeros
the vector value of F. We do this by computing (iteratively, as many times as required) the
solution of a set of n2 linear equations

[α] · δV = −F

and the adding the correction back,

Vnew = Vold + δV
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in the above equation the matrix [α] has components given by

[α]ij =
∂Fi

∂Vj

these partial derivatives are approximated by

∂Fi

∂Vj

≈
Fi(V1, ..., Vj + ∆Vj, ...) − Fi(V1, ..., Vj, ...)

∆Vj

where ∆V is specified by the user.
In summary the user has to supply the following subroutines:

1: A subroutine LOAD(x1, V, Y ) which returns the N -vector y (satisfying the starting
boundary conditions, of course), given the freely-specifiable variables of V at the initial
point x1.
2: A subroutine SCORE(x2, Y, F ) which returns the discrepancy vector F of the ending
boundary conditions, given the vector Y at the end point x2.
3: A vector of suggested increments DELV to be used in the finite difference formula.
4: A starting vector V.
5: A subroutine DERIVS for the ODE integration.
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Example:

As an example let us consider the one dimensional wave equation

∂2

∂x2
Ψ + k2Ψ = 0

with the boundary condition Ψ(x = 0) = Ψ(x = 1) = 0. This problem has a solution:

Ψ(x) = A sin knx, kn = nπ

we see that the eigenvalues kn are determined exactly. The eigenfunctions, however, are
determined within a constant multiplicative factor A. So if Ψ(0) is given the shooting
method will find kn such that the other boundary condition Ψ(1) = 0 is also satisfied. To
solve the above equation numerically we first have to reduce it to a set of coupled first order
ordinary differential equations. To do this let

Ψ′

1
= Ψ2, Ψ′

2
= −k2Ψ1

and let
Ψ3 ≡ k2 and Ψ′

3
= 0

Now we have 3 differential equations N = 3, one initial condition Ψ(0) = 0, i.e. n1 = 1 so
we have n2 = N − n1 = 3 − 1 = 2 freely specifiable variables, Ψ′(0) and Ψ3(0) = k2. The
shooting method will determine the actual value of k such that both boundary conditions
are satisfied. The value of Ψ′(0), however, will be the constant coefficient A and obviously
will not be determined by the shooting method. A computer program for this example is
attached.
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