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ABSTRACT

A Numerical Method For Computing Ocean Acoustic Modes
by Michael Blair Porter

We opresent a fast finite difference method for computing the
propagation numbers and corresponding normal modes for various oceanic
scenarios. Specifically, we consider the problem of computing the
acoustic field due to a time harmonic source in a stratified ocean of
constant depth. We consider three related models. In the first, the
ocean is stationary and the ocean subbottom is modelled as &
completely rigid medium. In the second, we allow for a laminar shear
flow parallel to the ocean bottom. In the third, we allow for
coupling into an elastic subbottom with depth dependent P- and S-wave

speeds.

The numerical method is a combination of well-known numerical
procedures such as, Sturm sequences, the bisection method, Newton's
and Brent's methods, the compound' matrix method, Richardson
extrapolation and inverse iteration. We also introduce a modified
extrapolation procedure vwhich substantially increases the speed and

accuracy of the computation.

Advisor: Professor BEdward L. Reiss
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CHAPTER 1

INTRODUCTION

The problem of computing the acoustic field in the ocean arises from
both military and civilian concerns including, the detection and
tracking of submarines, sub-surface communication, and navigation.
The ocean surface and the ocean bottom form an acoustic duct which
facilitates the long-range propagation of sound. In addition, there
may exist internal ducts due to gradients in the sound speed. This
type of problem is very similar to a variety of other guided-wave
problems which arise in the study of, for instance, optical fibers,
micréwave guide, surface acoustic wave devices, seismic wave
propagation, ionospheric radio wave propagation, and the Shrodinger
equation. Thus, although the ocean acoustic problem will be the focus

of this work, the techniques developed have broad applicability.

There are a variety of methods that have been used to compute the
acoustic field in an oceanic environment, e.g., Tay tracing, the
parabolic equation method, the fast field program, and the method of
normal modes. Each of these approaches has advantages for different
occasions. In particular, ray tracing is most effective for the
near-field due to the expense of numerically integrating the ray
equations into the far-field, and for high-frequencies due to the

asymptotics used to derive the model. The parabolic equation method
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is useful for including the effect of weak range variations in the
sound speed but is only accurate in narrow spatial domains. The fast
field program is appropriate for computing the acoustic field in the
entire écean due to a fixed source. Normal mode programs are
desirable when the problem must be solved repeatedly for several
source and receiver locations and for far-field, low-frequency
problems. They are also important as a means of verifying more
sophisticated models applied to simpler test proﬁlems. In addition,
the normal mode model, like the ray-tracing model, provides special
physical insights into the problem. In this work we shall consider

the normal-mode model.

The normal mode model assumes that the sound speed is a function of
depth but not range and that the ocean bottom lies at a constant
depth. This is often a realistic assumption for oceanic problems; the
sound speed is influenced primarily by the increase in temperature
towards the ocean surface, the increase in pressure towards the ocean
bottom, and the vertical dependence of the salinity. Normal mode
methods may also be applied to range-dependent problems by dividing
the range into segments and computing a medal solution in each
segment. Thus, despite the apparent simplicity of the model, the
normal mode methods have proven extremely useful for computing

acoustic propagation.

The normal mode representation is obtaired by considering a time
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narmonic source for the time dependence and then using separation of
variables on the resulting two-dimensional partial differential
equation for the acoustic pressure. In cylindrical coordinates the
solutions for the radial equation are Hankel functions while in
rectangular coordinates one obtains sines and cosines. 1In either case
the modes corresponding to the depth variable, z, satisfy the same
second-order. differential equation. Often, the ocean surface is
assumed to be a perfect pressure release and the ocean subbottom is
assumed to be perfectly rigid. In this case, one obtains a
Sturm-Liouville eigenvalue problem with a Dirichlet boundary condition
at the surface and a Neumann boundary condition at the ocean bottom.
The spectrum of the problem consists of a finite number of positive
eigenvalues corresponding to propagating modes and an infinite number
of negative eigenvalues corresponding to growing or decaying
solutions. These latter modes are normally omitted from the field

synthesis.

The sound speed profiles encountered in the ocean are usually
sufficiently complex that numerical methods are required. In
addition, the eigenvalues of this pfoblem are the sguares of the
nhorizontal wavenumbers and must be determined very accurately since
errors in these eigenvalues appear as phase shifts in the range
dependence of the pressure. If the range is large then these phase

shifts will seriously degrade the accuracy of the solution. In
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~addition, the number of propagating modes is roughly proportional to
the frequency of the source multiplied by the ocean depth, therefore
for high frequencies and/or deep oceans the modal problem can be

extremely expensive to solve.

Existing methods have been based on two overlapping classes of
methods: the method of coefficient approximation (stickler, 1975;
Gordon, 1979) and shooting methods (Ferris, et al., 1970;
Beisner,1974; Dozier, 1975) . In the method of coefficient
approximation the depth variable is divided into a series of layers
and in each layer the coefficients in the differential equation are
approximated by a function for which the differential equation may be
analytically solved. The most obvious choice is to use a piecewise
constant approximation in which case the analytic solution in each
layer is a combination of sines and cosines. The most popular choice,
however, seems to be to use a piecewise-linear approximation. This
yields Airy functions or equivalently Hankel functions of order 1/3.
The piecewise-linear model naturally yields better approximations to
the eigenvalues for the same number of layers and, according to its
proponents, is also more efficient. The chief drawback 1is that a

complicated subprogram for computing the Airy functions is required.

Loss of precision in implementations of the method of coefficient
approximation has been reported under various circumstances (Gordon,

1979). This problem is probably resolvable by choosing Airy functions
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rather than Hankel functions but in any case it indicates that a

coefficient approximation method must be very carefully implemented.

Regardless of the approximation chosen, one obtains a matrix
eigenvalue problem with transcendental functions for the elements.
The eigenvalues may then be found by solving for the gzeros of the
determinant using some root finder. Existing programs for the
‘acoustic problem require that an initial guess be provided by the
user, estimated by extrapolation using lower order eigenvalues, or
estimated by the WKB method. This approach is ineffective for the
lowest order modes which tend to be somewhat erratically spaced. The
- discussion in Chapter 2 provides a solution to this problem based on a
bisection technique and indeed this approach has recently been applied

to other Sturm-Liouville problems (Mikhailov and Vulchanov, 1983) .

In the shooting method one integrates from one boundary to the other
and adjusts a trial eigenvalue, using some root finder, until the
boundary condition at the terminal point is satisfied. One initial
condition is obtained from the boundary condition and a second 1is
selected arbitrarily and normalizes the eigenfunction. One advantage
of the shooting method is simplicity, since packages for solving
initial value problems are generally readily available. On the other
hand, the integration will quite often be unstable as physical
problems often have one or more ducts. OQutside the ducts the lower

order modes grow or decay exponentially. It is then important that
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the differential equation be integrated in the direction of
exponential growth for if the integration is performed in the opposite
direction round-off errors invariably lead to the growth of the
unwanted complement. This problem is readily resolved by multiple
shooting however only parallel shooting appears to have been used to

date.

In Chapter 2 we introduce a new method based on finite differences
combined with Richardson extrapolation. Richardson extrapolation has
found widespread use in a variety of areas, especially numerical
quadrature (the Romberg method) and the integration of systems of
ordinary differential equations (the Gragg-Burlisch-Stoer method). An
excellent discussion of extrapolation methods may be found in the
paper by Joyce (1971). Fundamentally, Richardson extrapolation is
based on obtaining a sequence of approximations to the exact solution
and using a knowledge of +the Dbehavior of the error in the
approximations to extrapolate to the exact solution. For the problems
we consider, this method is applied by obtaining approximations to the
exact eigenvalues via a finite difference scheme. It can be shown
that for the difference schemes we employ, the error in the
approximate eigenvalues can be written as a power series in h2, where
h is the mesh width. The extrapolation is then obtained by fitting a
polynomial in h2 to the sequence of approximations and then computing

the value of the polyncmial at h=0, 1.e., for a zero mesh width. We
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also introduce a modified -form of Richardson extrapolation in which
the error is represented as a sum of two functions. The first is a
transcendental function which gives the error as a function of the
mesh width, h, that would be obtained for a constant sound speed
problem. The second function is a polynomial in h2 which represents a
perturbation in the error due to the deviation of the sound speed from
a constant value. The modified extrapolation procedure provides
substantially better results than the standard Richardson

extrapolation for the higher order modes.

Naturally the efficiency of the overall metpod is strongly influenced
by the manner in which the approximate solutions are obtained. The
finite difference scheme we have employed yields an algebraic
eigenvalue problem for which many efficient algorithms have Dbeen
developed. In particular we have selected an algorithm based on Sturm
sequences combined with inverse iteration. In Section 2.3 this method
is interpreted as a shooting approach which provides valuable insights
into this latter class of methods. Specifically, this discussion
relates the Sturm sequence procedure to a zero counting in the
eigenfunctions and thus suggests a bisection procedure which may be
applied to obviate the need for initial guesses in other programs.
This discussion also indicates that one-sided shooting is effective if
only eigenvalues are required as, for instance, in dispersion curve

calculations. In comparison to existing methods for solving the modal
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equation, this approach is extremely simple due to the simple
difference approach used, and efficient over a wide range of accuracy
requirements due to the use of extrapolation. The Sturm sequence
provides an efficient procedure for systematically computing all of
the propagating modes (or specified subsets) without the requirement
of an initial guess. In addition, the use of inverse iteration to
compute the eigenfunctions provides a stable method for computing the

eigenfunction regardless of the number of ducts present.

In Chapter 3 we extend this technique to the case when a laminar shear
flow is present. This problem arises from the desire to reduce noise
in jet engine ducts and air conditioning systems or for assessing the
effect of ocean currents on long-range acoustic propagation. The
results presented in Section 3.5 suggest that these effects may indeed
be significant in realistic oceanic scenarios. Existing numerical
procedures include the shooting method (Mungur, 1969; Shankar, 1972)
and the Rayleigh-Ritz method (Savkar, 1971). The governing equation
is a second-order eigenvalue problem in which the eigenvalue appears
nonlinearly. The nonlinear occurrence of the eigenvalue is, according
to expectation, also manifested in the discretized algebraic
eigenvalue problem and introduces a number of new features. In
particular, the Sturm sequence procedure is not immediately applicable
and in Section 3.3 we generalize this procedure in a framework which

allows it to be incorporated in other numerical methods as well.
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CH. 1 - INTRODUCTION

The models considered in Chapters 2 and 3 assume that the ocean bottom
is perfectly rigid, which, depending on the specific local geclogy,
may or may not be a reasonable assumption. For instance, a bottom
structure in the Western North Atlantic which 1s described by Beebe
and MeDaniel (1980) features the following morphologies over a range
of 130 km:gravel and sand; sand and gravel; silt; sand; till; and
clay. For deep-water problems the sound speed profile is generally
dominated by the increase in pressure with depth. This positive sound
speed gradient traps the lower order modes and prevents them from
interacting significantly with the ocean bottom. Thus, for deep-water
problems a rigid bottom model is likely to yield accurate results even
when the ocean bottom is quite soft. Conversely, the rigid bottom
model is often questionable for shallow water problems. Ultimately,
the significance of the ocean bottom model must be assessed by
comparing experimental results to numerical results both with and
without an enhanced bottom model. Some recent efforts in this area

are summarized in Proceedings of a Conference on Bottom Interacting

Ocean Acoustics (Kuperman and Jensen, 1980) .

The ocean subbottom may be incorporated in a variety of ways. If a
portion of the subbottom is extremely soft then it may be treated as a
fluid layer overlying a fluid half-space, neglecting the effect of
shear waves (Beisner, 1974; Stickler, 13975; Gordon, 1979), or

alternatively as a fluid layer overlying an elastic half-space
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(Tolstoy, 1960; Essen, 1980; Ferla, et al., 1980). Still further
improvements may be obtained by using an arbitrary sequence of elastic
layers with constant P- and S-wave velocities in each layer. This
model has only recently been applied to ocean acoustics problems but
has been considered extensively in the seismological literature, where
it is known as the Thomson-Haskell method or the propagator matrix
method (Thomson, 1950; Haskell, 1953; Knopoff, 1964; Dunkin, 1965;
Thrower, 1965; Gilbert and Backus, 1966) . One also finds
implementations of shooting methods (Takeuchi and Saito, 1972) and
more recently the finite element method with cubic splines (Wiggins,
1976). The latter has primarily been applied to problems with
spherical geometry but the problems are essentially the same and have

followed a parallel development.

In Chapter 4, we have incorporated the effect of the ocean subbottom
into the model of Chapter 2 by performing an integration through the
elastic subbottom to compute an impedance condition at the
ocean/subbottom interface. The techniques applied in Chapter 2 to the
rigid bottom model then apply directly to this new model with the
exception that the Sturm sequence procedure is invalid due to the
complicated functional dependence of the impedance condition on the
eigenvalue parameter. We have therefore replaced the Sturm sequence
procedure with a deflation technique in order to compute the

eigenvalues at each mesh. In addition, the standard Richardson
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extrapolation was employed rather than the modified form due to the
greater computational expense required to compute the eigenvalues for
a constant property problem, which are required for the modified

extrapolation procedure.

Finally, we conclude this work in Chapter 5 with comments about
possible extensions or improvements which may be useful for other

problems.



CHAPTER 2

THE CLASSICAL OCEAN ACOUSTICS PROBLEM

2.1 Introduction

In a stratified cylindrically-symmetric ocean being excited by
continuous wave radiation of angular frequency w, the acoustic

pressure can be written in the form

P(r,z,t)= E: c.H(1)(k.r)p.(z)e'iwt, (2.1)
7 0 37

where the depth variable, 2z, ranges from O at the ocean surface to D
at the ocean bottom. The propagation numbers kj and the normal modes
pj(z) are then the eigenvalues and eigenfunctions, respectively, of
the following Sturm-Liouville problem:

p"+(u?/c?(2) k) p=0

p(0)=0 (2.2)

p'(D)=0.
Here, w is the circular frequency of the source and c(z) is the ocean
sound speed. The boundary conditions in (2.2) imply that the ocean

surface (z=0) is free, i.e., it is the pressure release condition, and

that the ocean bottom (z=D) is rigid.

There are only a finite number of eigenvalues of (2.2) that are real.
Then by the properties of the Hankel function they correspond to
propagating modes in the sum (2.1). The remaining eigenvalues
correspond to evanescent or non-propagating modes.

12
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As discussed in Chapter 1, explicit solutions of (2.2) can be obtained
only for relatively simple sound speed profiles c(z). The profiles
encountered in the ocean are usually sufficiently complex that
numerical methods are employed to solve (2.2).  For example,
coefficient approximation methods (Stickler, 1975; Gordon, 1979) and
shooting methods (Beisner, 1974; Dozier, 1975) are widely used.
Typically, the errors in the eigenvalues kj that are determined from
numerical solutions of (2.2) increase with Jj. Furthermore, as we
observe from (2.1) these errors appear as phase shifts in the range
dependence of p. Specifically, the phase shifts are proportional to
the products of these errors and r. Thus, if r is large as occurs in
long-range propagation, the phase shifts caused by the numerical
errors in kj will seriously degrade the accuracy of the series
representation (2.1). This suggests the need for extremely accurate

determination of the eigenvalues of (2.2).

In addition, we observe that if c(z) is replaced by its average value,
g, in (2.2) one obtains m=(w/g)(D/m) as an estimate of the number of
propagating modes. Thus for "high" frequency sources and/or deep
oceans, the number of propagating modes is large. These and other
factors in the repeated use of (2.1) to represent acoustic fields
suggest that the numerical methods must be fast in addition to
accurate. In this chapter we present a numerical procedure which

satisfies these requirements. It is a combination of well-known
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numerical techniques such as finite difference approximations and
Richardson extrapolation. The method is described in Section 2.2 and
then applied in Section 2.3 to three examples to demonstrate its speed
and accuracy. They are a Mathieu equation for which the eigenvalues
are tabulated (Abramowitz and Stegun, 1964), the well-known Munk
profile (Munk, 1974) for the sound speed, and finally a double-duct
profile. In Section 2.4 we present a brief discussion of the
relationship between the present method and shooting methods for

solving (2.2).

2.2 The Method

To solve (2.2) numerically we first define a mesh by dividing the
interval 0<z<D into N equal subintervals by the points zi=ih,
i=0,1,...,N where the mesh width h is defined by h=D/N. Then using
the standard three-point difference approximation to the second
derivative in (2.2) and the centered difference approximation to the

first derivative in (2.2), we obtain the algebraic eigenvalue problem

Ap=n%k%p (2.3)

as an approximation to the eigenvalue problem (2.2). Here, p is the
N-dimensional vector with components PysPosessPye These components
approximate the eigenfunctions of (2.2) at the mesh points. In

addition, the tridiagonal NxN matrix A is defined by
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— a1 1 //\ n
1 32 1 \ v
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2 a
L ¥
where the coefficients a, are defined by
a,=2-n%w?/c%(z,) - | (2.5)

We use the Sturm sequence method (Wilkinson, 1965; Parlett, 1980) to
solve the algebraic eigenvalue problem (2.3) for a fixed mesh size N.
Thus, we consider the seguence S1,S2,...,SN which is defined by

S,=1,  S,=n°k"-a,

5, =(n%k%-a,)8; -5, 5, (2.6)

-
S~ (hk -ay) 8y 1 -25y_5-

This sequence has the following two properties that we employ:

1. 8, is the ith principal minor of the matrix n2k2I-4,

so that SN is the characteristic polynomial.

2. For a fixed k2, the number of sign changes in the sequence (2.6)
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is equal to the number of eigenvalues greater than kz, where zeros

in the sequence are deleted.

In the first step of the method we find an isolating interval for each
eigenvalue kg, i.e., an interval in k2 which contains only the
eigenvalue k?. For the first, or largest, eigenvalue an upper bound
ig obtained from Gerschgorin's Theorem (Wilkinson, 1965). Zero 1is
taken as the lower bound since only propagating modes (positive
eigenvalues) are to be obtained. This interval is successively
bisected until it contains only the first eigenvalue, a condition that
is determined by counting the gign changes in the Sturm sequence.
This process is repeated for each subsequent eigenvalue. Now,
however, the previous eigenvalue's lower bound is an upper bound for
the next eigenvalue. In addition, lower bounds for the current
eigenvalue may have already been computed during the bisection process
for the previous eigenvalues. The isolating intervals provide initial
estimates for each eigenvalue. MNore accurate approximations of each
eigenvalue are then obtained by Brent's Method (Brent, 1971) which

combines bisection, linear interpolation and inverse quadratic

interpolation and guarantees convergence to the isolated eigenvalue.

In Richardson's extrapolation method (Joyce, 19713 Dahlquist and
Bjorck, 1974) improved estimates for the eigenvalues of the continuous
problen (2.2) are obtained by extrapolating to zero mesh width using

the numerical approximations to the eigenvalues, k?(h), of the
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algebraic problem (2.3). In the standard extrapolation method the
converged numerical value with mesh width h for the Jth eigenvalue

k?(h) is expressed as

200 Y2 2 4 2(m-1)
kj(h)- by *+ boh® * bhT + ...+ by 4D . (2.7)

Here, b, is the Richardson approximation to the jth eigenvalue of

(2.2). The constant bO is then determined from the linear system that

results from applying (2.7) to a sequence of successively finer meshes

{hj}=h1,h2,...,hm. Since this approximation depends on the sequence

of mesh widths that is employed we denote the Richardson approximation

corresponding to the meshes hp,h .,h by ki(P"°"q>° Successive

pt1’° """ g

extrapolations are generated recursively by the relation
2 2 2 2
x2(p,...Q)=n2(p)k%(p*1,...,q) - n°(a)k(p,...,q-1)

n2(p) - n2(q)

(2.8)

as we can obtain from (2.7).

In addition, we employ a modified Richardson extrapolation procedure
which was motivated by the analysis by Paine, et al. (1981). Thus,
the Richardson expansion (2.7) is now replaced by

R2(m)=(e))2(0)-(k1)2(0) + By + pyn® + bynt + L (2.9)

Here the eigenvalues (k?)z(h), which are defined by
-<k§>2<h>=w2/52-[s1n{(j-.s><w/n><h/2>}/<h/2>12 (2.10)
<k§>2<o>=w2/52-[<j-.5><n/n>32

are the exact eigenvalues of (2.2) and (2.3), respectively with c(z)
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replaced by its average value ¢C. That is, they are the exact
eigenvalues of the continuous and algebraic eigenvalue problems for
similar isovelocity  profile. Then the modified Richardson
approximations which we denote by ﬁ?(p,...,q) are computed as before
but now using (2.9). The recursion formula (2.8) may also be applied
to compute the modified extrapolation. The analysis in (Paine, et
al., 1981) suggests that the modified extrapolation method moderates

the error growth with increasing mode number.

The Sturm sequence procedure for isolating each eigenvalue of the
algebraic system is used only for the first mesh, i.e., for h=h1, and
not'fo? the subsequent meshes. Initial guesses for the eigenvalues
corresponding to the second and subsequent meshes are obtained by
using the modified extrapolation procedure but extrapolating to the
desired mesh size. Thus, for the second and subsequent meshes,
isolating intervals for the eigenvalues are not obtained and Brent's
method is not applicable. Therefore, Newton's method is employed,
starting from the initial guesses to solve for the numerical

eigenvalues.

The mesh selection is motivated by two considerations. First, if the
mesh is refined too rapidly, then the initial guess obtained from the
previous mesh may be sufficiently inaccurate that the Newton iteration
converges to the wrong mode. On the other hand, if the meshes are

refined too slowly then the extrapolation is not as effective. We
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have found it convenient to use the following meshes:
N=[3m{1.0,1.2,1.5,1.9,2.5,3.2,4.0,5.0}] (2.11)
m=(w/g)D/m.

Here, m is an estimate of the number of propagating modes provided

from the isovelocity profile with the same depth and frequency and

with a sound speéd, &, equal to the average sound speed. The square

brackets in (2.11) denote the integer part.

After the eigenvalues are obtained to the desired accuracy, the
eigenvectors are found by inverse iteration (Wilkinson, 1965) using

the difference equations and eigenvalues of the final mesh.

A related extrapolation method was previously developed for the
one-dimensional Schrodinger equation (Truhlar, 1972). The present
method has the following new features which provide improved speed and
accuracy.
1. A quadratically convergent root finder is employed rather

than the linearly convergent method of bisection apparently

used in (Truhlar, 1972).

2. The eigenvalues of the previous mesh are used to provide the

initial guesses for the eigenvalues of the next refined mesh.
3. We use a modified Richardson extrapolation procedure.

Finally, we remark that we have experimented with generalizations of
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our finite difference method by using Numerov's method (Dahlquist and
Bjorck, 1974; Dozier, 1975) and a five-point difference scheme to
obtain more accurate approximations to (2.2). We find that the
standard three-point difference scheme is both simpler to implement
and more efficient +than these higher order schemes. When a
fourth-order difference scheme, such as Numerov's method, is used in
the extrapolation procedure, the error in the eigenvalues has the
following form:

4 6

kg(h)= by *-bh ¥ beh™ + ... (2.12)

4
Consequently, each extrapolation increases the order of the method by
two, and after L extrapolations it is a 4+2(L-1) order method. This
same order can be obtained with L+1 extrapolations using the standard
three-point difference scheme, however, the standard scheme requires

about half as much computation time for the same number of mesh

points.

We have also applied extrapolation techniques to a coefficient
approximation scheme using constant sound speed layers and find the

present method to be more efficient.

2.3 Applications of the Method

We now present three applications of our method to demonstrate its
convergence properties, speed and accuracy, and finally, 1its

versatility. In the first problem we consider an eigenvalue problem
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for Mathieu's equation for which

p"+[ {249-cos(22/1000)} /1000-k?1p=0 (2.13)

p(0)=0

p' (5007)=0.
In Table 2.1a we present the first eight numerically determined
eigenvalues of the corresponding algebraic problems (2.3) for the mesh
widths indicated in the table (recall that h=D/N). In Table 2.1b the
errors in these numerical eigenvalues are shown. The error is the
difference between the numerically determined eigenvalues given in
Table 2.1a and the "exact" eigenvalues. The exact eigenvalues are
computed by our method using extrapolations with several more refined
meshes. They agree to 13 digits with tabulated values (Abramowitz and
Stegun, 1964). We observe that for each mesh the errors increase
monotonically with the mode number, which is indicated by J in Table
2.1, The symbol ET in the tables denotes the execution time in
seconds on the Northwestern Cyber 170/730 to compute all the

eigenvalues corresponding to each mesh width.

The results of successive standard Richardson extrapolations are shown
in Table 2.2. Of course, the first columns in Tables 2.1 and 2.2 are
equal, however, a comparison of the subsequent columns in Tables 2.1
and 2.2 shows the dramatic decreases in the errors that are achieved
by the extrapolation. Each successive extrapolation reduces the error

by & factor of 100 to 1000. The 100-fold error reduction which is
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obtained with one additional extrapolation would require a ten times
finer mesh and a similar increase in execution time if it were

obtained simply by mesh reduction.

The eigenvalues obtained using the modified extrapolation process are
given in Table 2.3. In comparison to the standard extrapolations of
Table 2.2, the growth in the error with increasing mode number is
dramatically reduced. This occurs particularly for the coarser
meshes. Thus, the numerical results suggest that if the speed of
computation is a controlling factor in the computation, so that the
least refined mesh consistent with accuracy is desired, the modified

extrapolation procedure then becomes more effective.

The second example that we consider is an ocean whose gsound speed
varies in accordance with the Munk profile (Munk, 1974). Thus, we
have

w=87/s

D=5000m

c(x)=1500[1.+.00737(x-1+e™*)] m/s (2.14)

x=2(z-1300)/1300.
where we have used parameter values suggested by Dozier (1975).
Numerically determined eigenvalues for certain selected modes are
shown in Table 2.4a for the indicated mesh widths. TFiner meshes are
required because of the relatively large number of propagating modes.

The corresponding errors in these eigenvalues are given in Table 2.4b.
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The standard and modified Richardson extrapolated eigenvalues and
their respective errors are presented in Tables 2.5 and 2.6, Again we
observe, the substantial increase in accuracy due to the Richardson

extrapolation.

The sound speed profile given in (2.14) is graphed in Figure 2.1, and
some selected numerically determined modes are shown in Figure 2.2.
With these parameter values only modes 17 and 18 are RSR

(refracted-surface reflected) modes.

In the final example we consider the double-duct profile sketched in
Figure 2.3. Specifically, we have
w=8x1550/A/4000 (2.15)

D=2000m

c(z)=1550/V4;(.6+.8z/D)(1-cos(4ﬂz/D))/64 n/s
Thus, we are considering the problem,

p"-[{64.+(.6+.82/D) (1-cos(4rz/D))}/4000-k>]p=0

p(0)=0 (2.16)

p ' (2000)=0.
The first nine eigenvalues at several meshes are displayed in Table
2.7 and the corresponding eigenfunctions are graphed in Figure 2.4.
For the parameters (2.15) there are approximately 80 propagating
modes. The execution times reflect only the time required to compute

the first nine eigenvalues. Successive extrapolations using the
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modified scheme are given in Table 2.8.

These examples suggest that the modified extrapolation procedure is
superior to the standard Richardson extrapolation with the most
dramatic improvements obtained when the error is largest, i.e., for
high-order modes, coarse meshes and low-order extrapolation. Thus,
the modified extrapolation procedure is particularly effective for the
RSRBR (refracted surface-reflected bottom-reflected) modes. On the
other hand, in the double-duct problem, in which we computed only the
RR (refracted-refracted) modes the standard and modified extrapolation

procedures would yield virtually identical results.

The merit of using the mgdified extrapolation scheme to generate an
initial guess is demonstrated in Table 2.9. The first row contains
the execution time required at each mesh when the bisection process is
repeated for each new mesh. In the second row we used one point
Richardson extrapolation, i.e., the eigenvalue from the previous mesh
was used as an initial guess and in the third row we used one-point
modified Richardson extrapolation. In the fourth row we used N-point
standard Richardson extrapolation and finally, in the fifth row we

used the N-point modified extrapolation and obtained the best results.

2.4 Relation to the Shooting Method

Some aspects of the finite difference method that we use are closely
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related to the shooting method employed by previous investigators,
see, e.g., Beisner (1974) and Dozier (1975). The shooting method
using the three-point difference approximation generates the value p;

from two preceding values P54 and Pi2 by the formula

p,=[n%k®-{2-n%?/c?(2,)} Ip

Ip; 4P _0- (2.17)

The surface boundary condition determines the value p1=p(0)=0. We
define the value of p,=p(h) by p;=1, since the eigenfunction is known
only within an arbitrary multiplicative constant. The shooting
parameter k2 is then determined so that Py_1=Py+1 i.e., until
p'(D)=0. 1Initial guesses for the value of k2 must be given to apply
the shooting method, e.g., the WKB method has been employed. Initial
guesses for the higher-order modes may be obtained by eitrapolation
from the lower-order modes. In addition, it follows from
Sturm-Liouville theory that the Jjth mode has j zeros and so by
counting the sign changes in the {pj} sequence it can be verified that

convergence is to the desired mode.

The shooting (2.17) and characteristic polynomial (2.6) recursions are
identical. Furthermore, the process of counting zeros is identified
with the Sturm sequence property that the number of sign changes in

the sequence is equal to the number of eigenvalues greater than k2.

An important difference between the finite difference and shooting

methods is in the computation of the eigenvectors. Since one-sided
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shooting is unstable when integrating into intervals in which the
solution decays (Froberg, 1965), the elements of the Sturm sequence
cannot be used directly to construct the eigenvectors. Other methods,
such as an analog of parallel shooting, have been employed for the
algebraic eigenvalue problem to partially obviate this difficulty
(Wilkinson, 1965). However, inverse iteration, which we employ in the
final step of our method has the computational advantage of not being
degraded as one-sided shooting or parallel shooting’ would be, for

profiles with multiple ducts.



CHAPTER 3

ACOUSTIC PROPAGATION IN DUCTS WITH SHEAR FLOWS

3.1 Introduction

In this chapter we extend the methods of the previous chapter to
problems involving acoustic propagation in ducts and in layers with
fluid flows. Typical examples of such problems are: the propagation
from a sound source in the ocean in the presence of a current; the
propagation of sound through a duct of a Jjet engine; and the
propagation in boundary layer or other shear flows over flat plates.
In the last example, the flow may extend to "infinity" normal to the
plate, in which case the normal modes contribute to the more general
spectral representation of the acoustic field. However, such flows
over flat plates are frequently modeled by a finite layer of fluid
flowing over the plate with the pressure on the upper surface of the

layer taken as the far field pressure distribution.

As in the stationary medium problem treated above, the normal modes
for the duct can be determined analytically only for relatively simple
flows and sound speed distributions. More generally; it is necessary
to determine them numerically. In this chapter, we consider problems
of two-dimensional stratified flows, such as boundary layer or other
shear flows, through ducts of finite depth D, where the sound speed of
the fluid is also stratified. The appropriate normal mode problem for

27
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such flows is then reduced to an eigenvalue problem for a
second-order, linear ordinary differential equation. Since the
acoustic medium is stratified, the coefficients 1in this equation
depend only on the depth variable, z. The eigenvalue parameter, k, is
the propagation number of the acoustic waves and the eigenfunctions
are the normal modes. Since k occurs nonlinearly in this equation, it
is a non-standard Sturm-Liouville eigenvalue problem unless the flow

velocity is identically constant.

The normal mode problem is formulated in Section 3.2. In Section 3.3
we discuss those mathematical properties of the modal equation which
are required for the numerical method and in Section 3.4 we describe
the method. Finally, to demonstrate the performance of the method it
is applied to two problems in Section %2.5. In the first problem we
consider a parabolic profile for the stratified flow velocity to
simulate an ocean current. The well known Munk profile (Munk, 1974)
is employed for the stratified ocean sound speed. In the second
problem the flow velocity is linearly stratified and the sound speed
is constant thus simulating the flow in a shear layer over a flat

plate.
3.2 Formulation

The two-dimensional basic flow velocityig(z), which is parallel to the

rigid wall (z=D), is given by
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U(2)=(u%(2),0,0) (3.1)

where the horizontal flow velocity, uo(z), is a specified function.
The upper layer of the duct is at z=0, so that the z coordinate is
directed downward. The two-dimensional Euler's equations for the
isentropic flow of a compressible fluid are then linearized about the
steady stratified flow (3.1) to obtain the acoustic equations. Then
by eliminating +the density and the entropy from the resulting
equations we determine that the acoustic velocity vector‘E*, which has
components [u*(x,z,t),o,w*(x,z,t)], and the reduced acoustic pressure
p*=pP, where P is the physical pressure, and o is the constant fluid
density of‘this flow, satisfy a system of three partial differential
equations. We seek solutions of these equations in the form

i(kx-wt) ’W*(x’z’t)=w(z)ei(kx-wt)

u*(x,z,t)=u(z)e
p*(x,2,£)=p(z) et (X0, (3.2)

where w is a specified circular frequency and the propagation numbers
k are to be determined. The depth dependent amplitudes then satisfy a
system of three ordinary differential equations. By eliminating u(z)
and w(z) from these resulting equations, we can show that p(z)
satisfies the following self-adjoint, second~order ordinary
differential equation,

[p'/a(z;u,%) ] +b(z;0,k) p=0 (3.3)
where primes denote differentiation with respect to 2z and the
functions a(z;w,k) and b(z;w,k) are defined by

a(Z;w,k)=(w—kuO(z))2, (3.4)
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b(z;w,k)=1/c%(2) -k%/a(z;0,k),

and c(z) is the specified stratified sound speed of the fluid.

To complete the formulation of the boundary value problem we specify
the boundary conditions that on the upper surface of the duct (z=0)
the pressure is a constant which we set equal to zero. On the lower
surface (z=D) the acoustic normal velocity vanishes. Thus we have
p(0)=0, p'(D)/a(D)=0. (3.5)

In summary, the eigenvalue problem is: for specified shear flows
uo(z), circular frequencies w of the source and sound velocities c(z),
determine the propagation numbers k=k'j of the acoustic field (3.2) for
which (3:3)-(3.5) have non-trivial solutions (normal modes) pj(z). It
is not a standard Sturm-Liouville eigenvalue problem since (3.3)

depends nonlinearly on the parameter k.

If the medium is stationary, so that uo(z)=0, then (3.3)-(3.5) is
reduced to

p"+(w?/c?(2)k%)p=0  ,p(0)=p"(D)=0. (3.6)
which 1is a standard Sturm-Liouville eigenvalue since it depends

linearly on the parameter k2.

3.2 Properties of the Equation

We now establish certain mathematical results that are required for
the numerical solution of (3%.3)-(3.5). We shall be interested in

subsonic flows so we assume that max(u{z))<min(c(z)).
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Theorem 1: The real eigenvalues k of (3.3), satisfy either

w/k)min(uo(z)+c(z)) or w/k(max(uo(z)-c(z)). (3.7)

Proof: Multiply both sides of the differential equation (3.3) by p
and integrate the result from z=0 to 2z=D. Then integrating by parts

and using the boundary conditions we get

-ﬁngﬂ?/a(z)dz + f&z)[p(z)]zaz - o. (3.8)
We naie that this integré%ion by parts must also be valid if a(z)
vanishes within the interval as physical constraints dictate that p
and p'/a be bounded. Since a(z)>0 it follows from (3.8) that there
exists an interval in (0,D) in which b(z)>0. Therefore, in this
interval we have from the definition of b(z) in (3.4) that
c2<(w/k—uo)2 from which the desired result follows. The theocrem
states that the bound on the phase velocity is increased or decreased

by the flow velocity, depending on whether the wave is travelling

upstream or downstream.

Theorem 2: For w>0 and k>0, the number of eigenvalues greater than k
is obtained by integrating (3.3) with the initial conditions p(0)=0,
p'(0)=1,- and then calculating the index function I(k), which is
defined by
I(k)= the number of zeros of p(z) in (0,D] +{1 if p(D)p'(D)<O,
|0 if p(D)p'(D)>0.

(3.9)
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To prove this theorem we first require the following extension of an

existing oscillation result (Hille, 1969) for the solutions of (3.3).

Lemma 1: Let p(z) and P(z) satisfy the initial value problems

(p'/a)' + bp =0; p(0)=0; p'(0)=1 (3.10)

(p'/A)' + BP

0; P(0)=0; P'(0)=1
where the continuous coefficients satisfy the conditions A>a>0 and B>Db

for all z. The Prufer variables, r(z), R(z), t(z) and T(z) are

defined by
p(z)=r(z)sin t(z), p'(z)=r(z)cos t(z);
P(z)=R(z)sin T(z), P'(z)=R(z)cos T(z). (%3.11)

Then the phases satisfy the inequality,

T(z)>t(z), for z>0. (3.12)

Proof: It is easy to show that the Prufer variables satisfy the
following differential equations:
r'={(Ta(z)-b(z)]/2)sin 2t }r ; r(0)=1

2

t'=a(z)cos“t + b(z)sinzt ; £(0)=0 (3.13)

Now suppose t(zo)=T(zO)=to for some positive zg.

At such a point,

t'(zo)=a(zo)coszt0 + b(zo)sinzto
T'(zo)=A(zo)cos2tO + B(zo)sinzto (3.14)

From which it is clear that T'(z0)>t'(zo). Thus if the T- and
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t-curves ever cross, then the T-curve must approach from below the
t-curve. This implies that there can be at most one crossing and this

occurs at z=0. This proves the claim.

We note that the differential equation for r, has the solution

r(a)=e J[a(8)0()1/2)sin 25(s) as (3.15)

and so r{z) is bounded away from zero and infinity. It follows that
the zeros of p(z) occur when the phase function, t, is an odd multiple

of 7/2 and the zeros of p'(z) occur when t is an even multiple of T/2.

Proof 2£>Theorem‘£: We first establish that I(kmax)=0, where kmax is

the upper bound on the eigenvalues implied by Theorem 1. After

multiplying (3.3) by p and integrating from O to z we obtain,

z z
p(z)p'(z)/a(z) - j?p')z/a(z)dej;z/b(z) dz=0. (3.16)
o 0
When k=k __, b(z) is negative and so we must have p(z)p'(z)>0. Hence,
p has no zeros and I(kmax)=0.

As k is decreased, a(z;k) and b(z;k) both increase. It follows from
the lemma that the phase function t(z;k) increases as k is decreased.
Since the eigenvalues occur at points where t(D;k) is an odd multiple
of /2 and 0<t(D;kmax)<TV2, the number of eigenvalues greater than k
is obtained as the largest n for which t(D;k)>(2n-1)m/2. Thus, the
problem of determining the number of eigenvalues less than k is
reduced to that of determining the number of rotations in the phase

function.
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We do not compute the phase function explicitly, so we need to be able -
to count rotations in p(z). If for some z,, t=mT then
t'(zo)=a(zo)c032(mﬂﬂ +b(zo)sin2(mn)=a(zo)>0. (3.17)

This implies that t(é) can cross through a line t=m7m at most once
during the integration from z=0. Thus m, the number of whole
multiples of 7 contained in t{(D) can be obtained by counting the zeros
of p(z). DNow, if (2m)n/2<t(D;k)<(2m+1)m/2 then n, the number of
eigenvalues greater than Kk, will be equal to m, but if
(2m+1)m/2<t(D;k)<(2m+2)7/2 then n is equal to m+1. Clearly, the
former case occurs when p(D)p'(D)>0 and the latter when p(D)p'(D)<O,

thus establishing the theorem.

Theorem 2 may be extended to the other quadrants of the w-k plane with

minor changes.
3.4 The Method

We first define a mesh by dividing the interval 0<z<D into N equal
subintervals by the points zi=ih, i=0,1,...,N, where the mesh width h
is defined by h=D/N. We then approximate the differential equation
(3.3) on this mesh by replacing the first derivative in this
self-adjoint oPe?ator by a standard two=point centered difference
approximation, centered at the midpoint of a subinterval. This leads

to the difference approximation

-1 -1 -1 -1 2.
(a5 1 /2)pi_4=(a75 1 /08 141/2)P5% (8 i+1/2)pi+1] *+ h7b, p,; =0,
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1=1,2,...,N, (3.18)

where we have used the notation

2;,1/278(25 44 /0) b;=b(z,) (3.19)

and P i=0,1,...,N are approximations to the eigenfunctions evaluated

at the mesh points. The quantity Py is the value of p corresponding

to the fictitious point zN+1=D+h. The boundary conditions in (3.5)

are approximated by

Py=0, (3.20a)

-1 -1 _
N—1/2(pN_pN—1) ta N+1/2(pN+1°pN) = 0.

By solving (3%.20b) for Py+q and substituting the result into (3.18)

a (3.20D)

with i=N, we finally obtain the algebraic eigenvalue problem

A(k)p=0 (3.21)

as an approximation to the continuous eigenvalue problem (3.3)-(3.5).
Here p is the N-dimensional vector with components PyyeeesPy and the

tridiagonal NxN matrix A is defined by

[ -1 2 -1 1
(a7) j2*a 5/2)*0"0; 2 3/2
. -1 -1 -1 2 -1
A= a2 (8Tilgete e a2 (3.22)

-1
28 n-1/2

-1 2
-2a N-1/2+h bN

-

The midpoint "averaged” difference approximation in

(3.20b) for the

derivative yields a matrix with elements involving only values of a(z)

and b{(z) inside the domain.
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The modified Richardson extrapolation procedure which we introduced in
Chapter 2, is used %o obtain more accurate estimates of the
eigenvalues of the continuous problem (3.3)-(%.5) from the eigenvalues
kj(h) of the algebraic problem (3.21). Thus, we express the Jth
eigenvalue kj(h) of (3.21) with mesh width h as
ﬁj(h)=k§(o)-k§(h) g+ Cn (5.23)

Here kﬁ(h) is the jth eigenvalue of the algebraic eigenvalue problem
(%3.21) where the sound speed and convection velocities are replaced by

"averaged" values & and G  respectively. These eigenvalues satisfy

the dispersion relation,

[(m—kguo)/6]2-(k§)2=e§<h), (5.24)
where ej(h) is defined by

ej(h)=sin{(j-.5><w/D)(h/z)}/(h/z). (3.25)
and Cy1Cpreeey are constants. The constant o is then the modified
Richardson approximation to the jth eigenvalue of (3.3)-(3.5) and may
be determined recursively as described in Chapter 2. As Dbefore, we
denote the standard and modified Richardson approximations

corresponding to the meshes hp,h 1""’hq by kj(p,...,q) and

p+
A

kj(p,...,q), respectively.

We now describe how we obtain the values kj(hp) for the sequence of
mesh widths. For the coarsest mesh width, we first find an isolating

interval for each eigenvalue kj' This is defined as an interval in k
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which contains only the eigenvalue kj’ For the first, or largest,
eigenvalue an upper bound for this interval is given by Theorem 1.
Zero is taken as the lower bound since we are considering only modes
which propagate to the right, i.e., in the downstream direction. This
interval is successively bisected until it contains only the first
eigenvalue. In Chapter 2 this condition was determined for the
algebraic problem corresponding to (3.21) by counting sign changes in
the Sturm sequence. Since the algebraic system (3.21) is nonlinear in
the eigenvalue parameter, the Sturm sequence method is not directly
applicable to the present problem. In Theorem 2 we derived an index
function which gives a zero-counting procedure for the present problem

and may be viewed as a generalization of the Sturm counting method.

This process is repeated for each subsequent eigenvalue. Now,
however, the previous eigenvalue's lower bound is an upper bound for
the next eigenvalue. In addition, lower bounds for the current
eigenvalue may have already been computed during the bisection process
for the previous eigenvalues. The isolating intervals provide initial
estimates for each eigenvalue. More accurate approximations of each
eigenvalue are then obtained by solving for the roots of the
characteristic equation by Brent's method (Brent, 1971) which combines
bisection, linear interpclation and inverse quadratic interpolation.

Convergence is then guaranteed to the isolated eigenvalue.

A characteristic function for the eigenvalue problem, that is, a
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function with zeros at the eigenvalues, may be obtained by setting
p,=1 and using the first N- difference equations of (3.21) to
recursively generate P, i=1,...,N. By substituting the py_4 and py
into the final difference equation, we obtain the residual, r(k),
which is given by r(k)=2a-§_1/2pN_1+(-2a_§_1/2+h2bN)pN. This residual
is then a characteristic function for the eigenvalue problem as it
much vanish if k is to be an eigenvalue. Clearly this process may be
iﬁterpreted as an integration of (3.3)-(3.5) and thus the computation
of the characteristic function simultaneously generates the
information required to compute the index function of Theorem 2. In
addition, it is easy to‘verify that the p; so generated, differ from
the principal minors of =-A by products of the squares of the
off-diagonal elements. It follows that the index function gives the
number of sign changes in the principal minors of -A and that the
present method is indeed a generalization of the Sturm sequence method
previously employed. We also note that the wupper bound on the
eigenvalues implied by Theorem 1, may be obtained from the discrete
problem (3.21) by using the same technique which is normally used to

prove Gerschgorin's Theorem.

Initial guesses for the eigenvalues corresponding to the second and
subsequent meshes are obtained by using the modified Richardson
extrapolation procedure, but now extrapolating to the desired mesh

size. Since isolating intervals are not obtained for these meshes,
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Brent's method is not applicable. We then use the secant method to
refine the root, although other procedures such as Newton's method
motivated by convergence and speed of computation, as discussed in

Chapter 2.

After the eigenvalues are obtained to the desired accuracy by the
modified Richardson extrapolation procedure, the eigenfunctions are
found by an inverse iteration (Wilkinson, 1965) defined by

21,

Ap~"'=p 1=1,2,..., - (3.26)
where the eigenvalues and difference equations of the final mesh are

employed.

3.5 Applications of the Method

We now present two applications to demonstrate the method. The first
application is motivated by acoustic propagation in the deep ocean in
the presence of a current. We consider a parabolic profile for the
current uo(z) and a Munk profile for the stratified sound velocity
c(2z) using the parameters suggested by Dozier (1975) and employed
previously in Chapter 2. Specifically, we employ the following

parameters:
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w=81/s,

D=5000m,

uo(z)=1.5[(z-D)/D]2 m/s,

c(x)=1500[1.+.00737(x-1+¢™*)] n/s, (3.27)
where the parameter x is defined by x=2(z-1300)/1300. The Mach number
for this flow is approximately 1/1000. In Table 3.1a we present the
numerically determined eigenvalues corresponding to the downstrean
travelling modes for the indicated mesh widths (h=D/N). The column
labeled "exact" contains the eigenvalues numerically determined by our
method using extrapolations with several more refined meshes. The
symbol ET in these tables denotes the execution time in seconds on the
Northwestern Cyber 170/730 to compute all the given eigenvalues
corresponding to each mesh width. The errors in these eigenvalues,
which are defined as the difference between them and the "exact"
eigenvalues are shown in Table 3.1b. In Table 3.2 we present the
eigenvalues obtained by the standard Richardson extrapolation
procedure, and their errors, and in Table 3.3 we present the same

information for the modified Richardson extrapolation procedure.

We observe from Table 3.1 the anticipated O(h2) convergence in that
doubling the number of mesh points reduces the error by a factor of
about 4. In contrast, the errors in the eigenvalues obtained from
both the standard and modified extrapolation procedures are reduced by

as much as a factor of 1000 with each additional extrapolation, for
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the first few eigenvalues. In addition, the modified extrapolation
procedure provides the same dramatic reduction in error for the
higher-order mocdes previously observed in the stationary medium

>

problem.

These results show that the efficiencies of the methods for the
present problem and the stationary medium problem treated in Chapter
2, are comparable, with one significant difference: the extrapolation
process for the present problem is less effective for the modes close
to cut-off. This occurs even with uo=0 in the present problem. This
discrepancy is a result of extrapolating with k rather than with k2,
as we did in Chapter 2. Intuitively, this occurs because the values
k%(h) move smoothly along the real line as h is refined but the values
of k(h) lie along either the real or the imaginary axes, and a pair of
eigenvalues on the real line can coalesce at the origin and then split
along the imaginary axis as h decreases. The extrapolation process
cannot determine this abrupt transition because real values of k will
always yield real extrapolates. Although none of the eigenvalues we
have computed in Table 3.2 actually split, it can be shown that
proximity to the splitting point is sufficient to adversely effect the

convergence.

In Table 3.4 the eigenvalues from this convected problem are compared
to the eigenvalues obtained when uo=0. The change varies from

2.3x10'6/m to 3.6x10'6/m, an effect that would be significant at
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ranges of approximately 300 km and beyond. A reasonable estimate of
this éffect of slow convective flows can be obtained by comparison to
a related problem with the sound speed and convection velocities
replaced by their average values. Taking the first term of the Taylor

5°

series in for the dispersion relafion, k(w;ﬁo), one obtains,

k(u0)= 2/z2-e2 - wi%32 + 0((59)?)

=(0)~(w/2) (2%/3). (3.28)
For the Munk profile, this yields

k(1/3)=k(0)-[8m/15201[ (1/3)/1520]

=k(o)-3.6x1o'_6. (3.29)

In the second application of our method, which we call the
aeroacoustic problem, we employ the following parameters:

w=33007/s,

D=1m,

uo(z)=165(z—D)/D m/s,

¢=330 m/s (3.30)
Then the corresponding dimensionless acoustic wave number wD/c=107 and
the Mach number of the subsonic flow equals 1/2. These parameters
correspond to acoustic propagation at moderate subsonic flow
velocities in a strongly sheared layer over the rigid surface (z=D),
where the "upper surface" of the layer is approximated by a constant

pressure surface. Since the depth of the layer is usually considered
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to be infinite the imposed boundary condition implies that we are only

considering trapped modes.

In Table 3.5, we present the numerically determined eigenvalues and

results are substantially the same as in the previous problem, that
is, the standard Richardson extrapolation method yields substantially
more accurate eigenvalues and the modified Richardson extrapolation

provides further improvements for the higher-order modes.

Graphs of the eigenfunctions corresponding tc the first 9 eigenvalues
are presented in Figure 3.1. The lower-order modes, modes 1 to 5, are
trapped near the wall (z=1.0) while the higher order modes, modes 6
to 9, are oscillatory throughout the interval and hence convey energy

to the surface (z=0).

In addition, we have applied our method to the aerocacoustic problem
with a Mach number of 1/10. The first six modes are graphed in Figure
3.2, The shear flow is less effective in forming an acoustic duct at
this lower Mach number as can be observed by comparing Figures 1 and
2. Thus, for a given mode, more energy is carried to the free surface

(z=0) at the lower values of the Mach number.



CHAPTER 4

BOTTOM INTERACTING ACOUSTIC PROPAGATION

4.1 Introduction

In the preceding models the ocean subbottom has been treated as a
rigid body and therefore replaced by a boundary condition that the
normal derivative of the pressure vanish at the ocean bottom. An
alternative is to model the ocean subbottom as an elastic half-space,
in which case one obtains an impedance condition requiring that some
combination of the pressure and its normal derivative vanish. 1In
either of these approaches, one may elect to declare the model's ocean
bottom to lie beneath that of the true ocean bottom and therefore
model a portion as a fluid layer. None of these approaches is
entirely satisfactory for bottom-interacting modes, for they fail to
take into account variations in both the P- and S-wave velocities in

the ocean subbottom.

As noted in Chapter 1, a number of existing programs use coefficient
approximation in the ocean, that is, the ocean is treated as a
sequence of layers with, for instance, constant or linearly varying
properties in each layer. Within each layer the problem is solved
analytically. In this case, it is natural to extend these models by
replacing the elastic subbottom by a sequence of layers with constant
P- and S-wave velocities in each layer. This yields the so-called

44
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Thomson-Haskell method and its variants (Schwab, 1981). A popular
complaint about this method is that it is unﬁhjsical to use constant
property layers for a medium in which the properties vary with depth.
A similar complaint might be levelled against any numerical method,
however in terms of other criteria such as simplicity, the
Thomson-Haskell methods fall short; the propagator matrices are 4x4 or
5x5 when compounded and the individual elements are complicated

combinations of transcendental functions.

In Chapter 2, we presented an alternate model for the ocean based on
finite differences combined with Richardson extrapolation, which we
concluded possessed the two desirable properties of efficiency and
simplicity. In this chapter, we describe a simple extension of this
techﬁique to allow for coupling into an elastic subbottom with
continuously varying P- and S-wave velocities. The governing
equations are presented in Section 4.2, followed by a description of
the modifications in Section 4.3. In Section 4.4, we present the
results of two test problems to demonstrate its performance. The
first problem is a shallow water scenario with a soft bottom. The
second is a deep water scenario with a Munk sound speed profile in the
ocean (Munk, 1974) and a linear profile for the P- and S-wave
velocities in the subbottom. The significance of the elastic bottom
is illustrated by comparing to the results to those obtained when the

subbottom is modeled as a completely rigid body.
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4.2 Formulation

i(kx—wt) one

After separating out an x and t dependence of the form e
obtains the following second-order differential equation for the

pressure as a function of the depth variable z:

p"+(w2/c2(2) k) p=0 (4.1)

where ® is the angular frequency of the source and c(z) is the sound
speed. At the ocean surface the pressure vanishes:

p(0)=0. (4.2)

In the elastic subbottom the modal equation is fourth-order (Aki and

Richards, 1980):

- - -
r, 0 -1 1/(p0§) 0 r,
2, 2 2 2 2
T, | |k (cp-2cs)/cp 0 0 1/(pcp) r,
=12 2 2 2 2
5| |k t(2z)-wp 0 0 (cp—2cs)/cp rs (4.3)
2 2
L?4d i 0 -0 p k 0 B r44
where,
- 4 2 2\ 2 2
t(z) o[cp—(cp-ch) ]/cp (4.4)
and,
r1=u/ik,
r,=w,

ry=t,./ik, (4.5)
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The quantities u, w, Téz and Téx denote the x displacement, =z
displacement, normal stress and tangential stress respectively. In

addition Cp’ c, and p are the P-wave speed, S-wave speed and density
respectively. At the interface, we require that w, T, and Tox be

continuous:
ry(D,)=p'(D,)/u,
r5(D,)=0, (4.6)

1’4(D1 )=-p(D1) ’

where D, is the depth of the ocean. The subbottom of thickness D, is
terminated with a completely rigid basement at which the normal and
tangential displacements must vanish:

74 (Dy+D,)=0,

r,(D,+D,)=0. (4.7)
4.3 The Method

The modal equation in the ocean is treated in the same fashion as in
Chapter 2 with the excepticn that the rigid bottom boundary condition
is replaced by an impedance condition of the form f(k2)p+g(k2)p'=0,
where f(kz) and g(kz) are for the moment undefined functions which
depend on the properties of the elastic subbottom. We divide the
interval [O,D

1] into N1 equal subintervals by the points zi=ih1,

i=O,1,...,N1 where the mesh width h1=D1/N1. Then using the standard
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three-point difference approximation to the second derivative in (4.1)

and the centered difference approximation to the first derivative in

the impedance condition we obtain the algebraic eigenvalue problem
(k%) p=0 (4.8)

4s an approximation to the eigenvalue problem (4.1)-(4.7). Here p is

the N -dimensional vector with components p1,p2,...,pN1. The

tridiagonal matrix A is given by

{a1—h5k2 1 ]

2.2
1 aN1_1-h1k 1
2 2 2,2 2
] 2g(k)  elk )(aNl—hlk )-2nf(k >J
(4.9)
where the coefficients a. are defined by
~ 2.2, 2 .
a;=2-h;w/c (zi), i=1,2,...,N,. (4.10)

Now, suppose r and s are two linearly independent solutions obtained

by integrating the modal equations in the elastic subbottom from the

rigid basement up to the interface with initial conditions given by
x(D;+1,)=(0,0,1,0),

s(D2,+D,)=(0,0,0,1). (4.11)
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If k° is to be an eigenvalue then it must be possible to form a linear
combination, Ar+Bs, of these solutions satisfying +the interface

conditions at z=D1, that is,

B

r 20
T, % | A p'/uf 5
| !

Ty s3 | Bj=] 0 ; (4.12)
!
Iy Sy P

In order for a solution to exist we must have

w2[r2s3-r3s2]p—[r3s4—r4s3]p'=O. (4.13)

Thus, in principle the functions (k%) and g(x?) might be computed by
integrating (4.3) twice from the rigid layer up to the interface wiﬁh
different initial condition. In practice the r and s functions so
computed have a tendency to become linearly dependent. This
difficulty is readily resolved by the compound matrix method (Ng and
Reid, 1979; Gilbert and Backus, 1966). We introduce the following
variables:

Yy=rysp-rys,
Y2=r3s4-r4s3
Y3=r1s3—r3s1

Y4=-(r2s3—r3s2) (4.14)

Y5=-(r1s4—r4s1)

Y6=-(r234-r4s2)

Evidently £(x°) is identified with w2Y4 and g(k%) with Y,. By

differentiating these equations and using (4.3) +to eliminate the
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derivatives of r and s that appear, one obtains the following

differential equation satisfied by Y:

r 2 - 2 7 I
Y, 0 0 0 1/Coeg)  -1/(pc2) | v,
I, 0 0 0 %0 —[kzt(z)-wzpjé '
- 2 2,2 :

Y3 = 0 0 0 1 (cp—2cs)/cp I Y3

2 2 2 2, 2 .2, 2
Y4 k“t(z)-wp 1/(pcp) -k (cp-zcs)/cp 0 0 Yy
2 2 2
‘YSJ ] w<p —1/(pcs) -2k 0 0 i ,Y?
(4.15) \<f?3

The differential equation for Y6 reduces to Y6=-k2Yé["§H§—3;;;—;;;n

eliminated from this systen. The initial <conditions for these

equations are obtained by substituting those for r and s into the

definition of Y:

Y1(D1+D2)=O,

To(Dy+0y)=1,

Y3(D1+D2)=O, (4.16)

¥4(D+D,)=0,

T5(Dy+D,)=0.
The differential equations are then integrated using the modified
midpoint method (Burlisch, 1966; Dahlquist, 1974) which is an explicit
second-order integrator for first order systems of the form Y'=f(z,Y)
and is given by

Yo=v(zq),

Y1=30*,1(24,50) ,

ie17¥3_q*20,8(2; ,y,), i=1,2,... N



CH. 4 - BOTTOM INTERACTING ACOUSTIC PROPAGATION 51

Yi=(yi_1+2yi+yi+1)/4, for i even. (4.17)
This final step is a filter required to stabilize the integration.
Since we are only interested in the values of the functions at the
terminal point at Z=D1 we need only filter at that point. The number

of subintervals in the subbottom, N2, must be even.

Now that £(k°) and g(k°) are defined we may proceed with the solution
of the eigenvalue problem. For a given k2 we compute the coefficients
of the impedance condition and then the determinant d(k2) of (4.9) via
the following recursion,

P6=0,

p.=1, (4.18)

pi=(ai-hl‘2k2)pi_1 D5, 1T2,...,N, -1

406 =[g(c%) (ay, -n%?)+2ne (&) Iy L1728 )py p.
This is equivalent to shooting down from the ocean surface to the
interface and computing f(k2)p(D1)-g(k2)p'(D1). Subsequently K is
adjusted such that d(k2) vanishes using some root finder. We have

elected to use the secant method.

If an initial guess is not available then it is desirable to have a
procedure for systematically producing all of the eigenvalues
corresponding to right-travelling propagating modes, i.e., positive
real k2. When the impedance condition is simple, as it was for the

completely rigid bottom model treated in Chapter 2, a bisection
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procedure can be devised based on the number of gzeros in the
eigenfunctions. TFor more complicated interface conditions, it is not
clear how to generalize this procedure. We note that a more
conventional generalized eigenvalue problem of the form AE=kZBE_ is
readily obtained by merely incorporating difference equations for
(4.3) into the matrix. The Sturm sequence method has been extended to
this case, provided A and B are symmetric and B is positive definite
(Wilkinson, 1962). A and B are readily symmetrized but the existence
of complex eigenvalues k2 for many simple problems, e.g., elastic
waves in plates, suggests that it will not in general be possible to

produce a positive definite B at the same time.

An alternate procedure, which we have used in our test problems, is to
apply the secant method beginning at a k=kmax equal to the upper bound
on the eigenvalues. A good estimate for kmax may be obtained from
w/min(c,cp,cs). It can be shown that when the roots are real the
secant method will converge to the largest root. It has also been
shown that if the shift suggested by the secant method at each step is
doubled then the secant method can at most cross over one root. Thus
when the sign changes one can switch back to the standard secant
method and still be assured of convergence to the desired root
(Wilkinson, 1965). The mnext largest root is in turn found by
deflating all previous known roots. The deflation is accomplished by

returning the determinant with known roots divided out as follows
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d(k‘2)=d(k2)[gI k?/(kz_k§>]. (4.19)

_As in the previous problems, we have applied Richardson extrapolation
to increase the accuracy in the eigenvalues. Thus we solve the
eigenvalue problem (4.8) at several meshes and extrapolate to zero
mesh width using a polynomial fit of the form

4. (4.20)

k?(h)=bo + boh® * b,h
In general, k?(h) would be a bivariate polynomial involving the mesh
width in the ocean and the mesh width in the subbottom. However, we
refine both meshes simultaneously, maintaining the proportions of the
two mesh widths, and thus the polynomial is reduced to a univariate
form. In (4.20), bO is the Richardson approximation to the jth -
eigenvalue of (4.8) and is computed recursively as described in
Chapter 2. We shall denote this Richardson  approximation
corresponding to the meshes hp’hp+1”"’hq by ki(p,...,q) as usual.
As before, we also use the extrapolation procedure to produce an
initial guess at a refined mesh, thereby bypassing the deflation

procedure.

Once the eigenvalues have been computed to the desired accuracy, the
eigenfunctions may be found by an inverse iteration (Wilkinson, 1965)

1 starting with _BO=1. For the purpcse of

of the form A(k%)pl*lsp
computing propagation loss this spares the expense of computing
unnecessary eigenfunctions in the elastic subbottom. If, on the other

hand eigenfunctions are desired in +the elastic subbottom, it is
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probably best to incorporate difference equations for the elastic
subbottom into the matrix and apply inverse iteration to the entire
matrix. For our computations of the eigenfunctions we have used the
Trapezoidal method to obtain difference equations in the subbottom.
All of the previously described techniques may be applied to this
alternative formulation, yielding a more complicated but approximately
as efficient method. We note that it is possible toc derive a set of
differential equations for the compound matrix method, which can be
integrated ©backwards once from the interface +to produce the
eigenfunctions (Ng and Reid, 1979). However, these equations are
exact for-an exact forward integration and it is not clear what the
effect of using discretized solutions is on the accuracy of the

reverse integration.

4.4 Applications of the Method

We now present two applications of our method to demonstrate its
performance. In the first problem we consider a shallow water
environment with a constant sound speed of 1500m/s in the ocean and S-
and P-wave speeds of 700m/s and 1700m/s respectively in the subbottom.
The ocean depth is 300m and has a density of 1gm/cm3 while the
subbottom has a depth of 200m and a density of 2gm/cm3. The circular

frequency is w=307/s.

The numerically determined eigenvalues and corresponding errors are
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presented in Table 4.1. The exact eigenvalues for this problem were
determined by a compound matrix formulation of the Thomson-Haskell
method. The error table reflects the second order convergence of the
scheme in that a doubling of the number of mesh points reduces the
error by a factor of about 4. The extrapolations and their errors
are presented in Table 4.2. In contrast to the unextrapolated
eigenvalues, the errors are reduced by as much as a factor of 1000
with each extrapolation. The quantity ET in these tables is the
execution time required on the Northwestern Cyber 170/730 to compute
all the given eigenvalues for the indicated mesh width. The row
labelled "N1/N2" contains the number of subintervals in the ocean over

the number of subintervals in the subbottom.

In Figures 4.1-4.3 we have graphed the eigenfunctions for modes 3,9
and 15. ©Note the scaling information in the figure captions. The
eigensolution (p,r1,r2,r3,r4) has been scaled such that max Jp(z)=1.
These modes are representative of three classes of modes which exist
for this problem. The first class, modes 1-7, are seismic modes,
i.e., modes which have phase velocities less than the sound speed in
the ocean and are consequently evanescent in the ocean. The second
class of modes, modes 8-10, have a rhase velocity greater than both
the S-wave speed in the subbottom and +the sound speed in the ocean
but less than the P-wave speed in the subbottom. These modes are

oscillatory in the ocean but only the S-wave component is oscillatory
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in the subbottom. The third class of modes, modes 11-18, have a phase
speed greater than the S~ or P-wave speeds in both the ocean and the

subbottom and are therefore oscillatory throughout the region.

The second example that we consider is an ocean with a Munk sound
speed profile overlying a relatively rigid subbottom with linearly
increasing S- and P-wave speeds. The parameter values for the Munk
profile are those previously employed in Chapters 2 and 3. Thus we
have,

w=81/s

D1=5000m,

D,=1000m, , (4.21)
c(x)=1500[ 1+.00@737(x-1+e"*)] m/s, x=2(z-1300)/1300,

cp(z)=47OO+1OO(z-D1)/D2 m/s,

Cs(z)=2000+100(z—D1)/D2 n/s.
In Table 4.3 we have displayed the eigenvalues and their errors at
several meshes. Successive extrapolations and their errors are given
in Table 4.4. The column labelled "exact" was obtained by our program
using higher-order extrapolation. For this problem there exists 8
classes of modes including an interfacial mode characterized by
evanescence away from the interface. Representatives of some of these

classes of modes are graphed in Figures 4.4-4.6.

The significance of the elastic bottom is illustrated in Table 4.5 in

which we have presented the eigenvalues for this problem and the
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eigenvalues for a problem with the same sound speed profile in the
ocean but with the subbottom modeled as a perfectly rigid medium.
Naturally, there is no equivalent for the interface mode. Modes 2-6,
which are +trapped in the duct of the Munk profile are largely
unaffected by the subbottom model as expected. In contrast, the
highest-order modes of the +two models appear to be completely
unrelated. These results suggest that even with relatively rigid
ocean bottoms, significant energy may be coupled into the subbottom by

modes which are not trapped in an oceanic duct.



CHAPTER 5

CONCLUSIONS

We now consider possible modifications, improvements and extensions of
the method. The time required to solve for the eigenvalues at a given
mesh might conceivably be reduced by using a different rocot finder.
Since most program libraries provide a variety of root finders, it is
in principle, a simple matter to compare each of them on several test
problems. In view of the different classes of modes present in a
typical ccean acoustic scenario e.g., modes trapped in internal ducts
(RR modes) and boundary interacting modes (RSRBR modes), and the
concomitant changes in the local behavior of the determinant, it would
not be surprising if one root finder performed better for one class of
modes and another for another class. Thus a more sophisticated code
might automatically select the optimal roct finder. In regard to the
choices of the secant and the Newton root finders, we note that the
Newton method is better behaved for extremely small tolerances than
the secant method (Wilkinson, 1965) in that, the secant method may
shoot off unpredictably if too small a tolerance is specified. On the
other hand, the derivative required by Newton's method may not always
be readily computable in which case the secant method is attractive.
In terms of the efficiency of the two methods, asymptotic formulas
suggest that the secant method is superior, though in limited testing
for the stationary medium problem we found this not to be the case.

58
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It is tempting to employ variable-order extrapolation in yet a third
manner in the method by using it to compute a root. (The secant
method would then be a special case of this root finder.) We have done
some experiments with this root finder and obtained favorable results.
It should be borne in mind that the expense of computing the function
for which the zeros are required, i.e., the determinant of the matrix
of difference equations, Justifies a considerable expenditure of

effort to reduce the number of function calls.

The use of a polynomial fit to the eigenvalues as a function of the
mesh width is historically +the most popular as well as the most
obvious choice, though there is certainly no necessity to restrict
oneself to this form. Indeed, the widely used GBS method (Burlisch
and Stoer, 1966) for solving initial value problems employs a rational
polynomial or Pade approximant. For the initial value problem it has
often been stated that this approach is superior and occasionally
evidence has been presented to support this. We have performed
limited testing on an isovelocity problem and found insignificant

differences, though additional testing is certainly merited.

Borrowing further from the experience of initial value problem solvers
raises the gquestion of whether an uneven mesh might be more efficient.
For the stationary problem treated in Chapter 2, the properties of the

solution are sufficiently well understood that it would be a simple
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matter to automatically select an uneven mesh for each mode or for
groups of modes, with a finer mesh where the oscillation is greatest.
By tabulating the sound speed for the finest mesh, the expense of
setting up the matrix may be reduced. The use of artificial internal
boundaries for the computation of internally trapped modes (RR modes)
may also be employed, as suggested by PFerla, Jensen and Kuperman

(1982).

The elastic problem of Chapter 4 presents a number of new features.
Like the convected acoustic equation treated in Chapter 3, there may
exist backward travelling modes, i.e., modes with phase and group
velocities of opposite sign. In addition, there may exist modes with
a cut-off frequency corresponding to a non-zero wavenumber. The
deflation technique has performed well in the test problems considered
though it would be desirable to generalize the Sturm sequence method
and with it gain the ability to efficiently select out specified
modes. It is interesting to note that although the Sturm sequence
procedure has not been extended to the arbitrary generalized algebraic
eigenvalue problem, it is possible to obtain this information for an
arbitrary polynomial via the Routh-Hurwitz theory. in principle this
immediately implies a technique for treating the algebraic eigenvalue
problem by constructing the characteristic polynomial. In practice
the computation of the characteristic rolynomial is both expensive and

unstable (Wilkinson, 1965). Nevertheless, the duality of the problems
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suggests that an effective Sturm sequence procedure might be obtained
for the generalized algebraic eigenvalue problem. Such a procedure is
important not just to computing elastic normal modes, but also to
problems in hydrodynamic stability, vibrations of structures and a

variety of other problems.

Finally, we note that the programs may be readily modified to
accommodate multiple interfaces or a depth dependent density;
Absorption may also be included in the usual manner either a priori by
introducing an imaginary component in the sound speed profile or a
posteriori via a perturbation technique. Alternatively, absorption
might be included by employing a viscoelastic or porous viscoelastic
model. We also note that if an eigenvalue is to be computed with an
accuracy very close to the machine precision then the difference
schemes should be implemented in "summed-form" (Dahlquist and Bjorck,
1974; Friar, 1978). That is, the three-point recursions corresponding
to the second-order modal equations, should be reduced to two

two-point recursions corresponding to a pair of first-order equations.



TABLES

Table 2.1a Numerical eigenvalues Kz(p)=104xk2(p)
for the Mathieu problem.

(L

=

DO 3=
OO —==MPMNMNN

23
.Q320
K<(1)

4852984161
.4001782107
. 2423687693
.0092366186
7051683913
.3358389303
.9081312255
4300138418

QO == N

27
.Q150
K°(2)

.4852970550

.4000917631

.2417064749

.0067094600

.6983223636

.3207261614

.8790302449

.3792089530

OO ==

34
.Q150
K°(3)

.4852957256
.4000072419
2410580514
.0042301876
.6915877916
3058087319
.8501873622
.3286120258

OO == MN

43
.0280

k“(4)

.4852948750
.3999531269
.2406424340
.0026384386
. 6872545372
.2961839183
.8315161183
.295'7314732

Table 2.1b Errors in numerical eigenvalues e(p)=k2—k2(p)
for the Mathieu problem.

1

OO0V uNn a3

23
.0320
e(1)
.9E-10
.1E-08
.4E-07
.2E-07
.5E-06
.5E-06
.OE-05
.9E-05

27
.0150
e(2)
.5E-10
.2E-08
.TE-07
.TE=O7
8E-06
.OE-06
.9E-06
.3E-05

34 43
.0150 .0280
e(3) e(4)
.2E-10 -1.4E-10
.4E-08 -9.0E-09
.1E-07 -6.9E-08
2E-07 -2 .6E-07
.1E-06 -7.2E-07
.5E-06 -1.6E-06
.OE-06 ~3.1E-06
.8E-06 ~-5.5E-06

QO —~—==1MNMNMN

62

"Exact"

.4852934565
.3998628016
23994779099
.9999739573
.6799843748
. 27799895833
7999925595
.2399944196



TABLES

Table 2.2a Standard extrapclations K2(p,...
for the Mathieu problem.

W~ W = 3

Table 2.2b Errors in standard extrapolations e(p,...

N
ET
J
1
3

2
4
5
6
7
8

23
.0320

K(

0o

1)

2.4852984161
2.4001782107
2.2423687693
2.0092366186
1.7051683913%
1.3358389303
0.9081312255
0.4300138418

OO == N

27
20150
K<(1,2)
.4852934551
.3998631090
.2399547064
.0000251255
.6802146202
.2807528877
.8020581510
.2448300221

O O—===PPON

34
.0150
k2(1,2,3)
.4852934565
.3998628018
.2399479167
.9999740544
6799850911
.2799931252
.8000059517
2400362101

for the Mathieu problem.

23

.0320

e(1)

-4.
-3,
-2.
-9.
-2.
-5.
-1.
-1.

9E-10
1E-08
4E-07
2E-07
5E-06
5E-06
OE-05
9E-05

27
.0150
e(1,2)
1.3E-13

-3.0B-11
-6.7E-10
-5.1E-09
-2.3E-08
-7.6E-08
-2.0E-07
-4 .8E-07

34

.0150 .0
e(1,2,3) (1
-3.1E-16 6
-1.5E-14 -4
-6.8E-1%3 -7
-9.7E-12 -5
-7.1E-11 -8
-3.5E-10 -6
-1.3B-09 -3
-4.1E-09 -1

63
vq>=1O4Xk2(Py s ,Q)
43
.0280

K%(1,2,3,4) "Bxact"
2.4852934565 2.485293%4565
2.3998628016 2.3998628016
2.2399479099 2.2399479099
1.9999739574 1.9999739573
1.6799843756 1.6799843748
1.2799895894 1.2799895833
0.7999925926 0.7999925595
0.2399945583 0.2399944196

,Q)=k2-k2(P,--~,Q)

43
280

12,3,4)

2E-17
.9E-17
.8E-~-17
L7E-15
.0E-14
.1E-13
3E-12
3E-11



TABLES

Tabl

=
L= =
(]

O~120UT VN =

e

OO == 2PN

Table

23]

O30V~ VN -G g

2.3a Modified extrapolations Kz(p,...
for the Mathieu problem.

23
.0%320
Rg<1)

-4852945298
.3998638124
.2399488826
-9999749911
.6799854735
.2799907614
+7999938374
-2399958237

2.3b Errors in modified extrapolations

OO = = = NN

27
A2015O
K°(1,2)

-4852934547
.3998627897
.2399478790
-9999738957
6799842687
2799894157
7999923086
2399940563

for the Mathieu problem.

23

.0320

-1
-1

-1
-1
-1
-1
-1

&(1)

.0E-10
.QE-10
-9.
.0E~-10
.0E-10
.1E-10
2E-10
«4E-10

TE~-11

27
.0150
&8(1,2)
.TE-13
1E-12
.OE-12
1E-12
.OE-11
.6E-11
.5E-11
.6E-11

64

,Q)=1O4Xﬁ2(P,'--;Q)
34 43
.0150 .o #0280
ﬁ2(1,273) K2(1)2y3,4) "Exact"
2.4852934565 2.4852934564 2.4852934565
2.3998628017 2.3998628016 2.3998628016
2.2399479102 2.2399479099 2.2399479099
1.9999739585 1.9999739573 1.9999739573
1.6799843781 1.6799843747 1.6799843748
1.2799895911 1.2799895831 1.2799895833
0.7999925757 0.7999925589 0.7999925595
0.2399944510 0.2399944182 0.2399944196
8(p,.+.,q)=k°-k%(p,...,q)
34 43

.0150 .0280

€(1,2,3) &(1,2,3,4)

-3.1E-16 7.9E-17

-4 ,.7E~15 -5.5E~-17

~3.1E-14 1.6E-16

~1.1E~13 1.1E-15

~-3.3E-13 5.4E-15

~7.7E-13 1.8E-14

-1.6E-12 5.4E-14

~3.1E-12 1.3E-13



Numerical eigenvalues

for the Munk profile.

TABLES

Table 2.4a

N= 268
ET= 2.8570

J K<(1)

1 3.3563831469
5 3.2991005678
9 3.2470718156
13 3.1987746315
17 3.1541731417
21 3.1043750682
25 3.03%68104016
29 2.9559009269
33  2.8625216362
37 2.7571242285
41  2.6400582045
45 2.5116449357
49  2.3722043890
53 2.2220665844
57 2.0615768883
61 1.8910984691
65 1.7110133%3199
69 1.5217225003
73 1.3236459219
77 1.1172218518
81 0.9029062294
85 .0.6811718530
89 0.4525074705

O OO — = —= = =N NN N NN N LD WD W

321
1.5820
K<(2)

.3563827650
2990875105
.2470319752
.1986976127
. 1540630239
1041172179
.0362991701
.9549819056
.8609843054
.7546959557
.6363970543
.5063325887
3647393182
2118575377
.0479367091
.8732382827
.6880371097
.4926220974
2872964304
0723775297
.8481968444
.6150995309
+ 3734440531

OO O — = = = = PN NN N NN NNV

K2(p)=103xk2(p)

402
1.6980
K(3)

.356%824465
.2990766285
.2469987862
. 1986334761
.1539713960
.1039021779
.0358725646
.9542144804
.8596996200
.7526651520
6333325835
.5018819615
.3584789923
.2032869781
.0364726412
.8582091552
.6686777826
.4680687700
.2565818235
.0344263343
.8018214513
.5589960529
.3061886513

OO0 = = = = = NN MNMN NN NDWDN WA

509
1.5970
K°(4)

3563822357
.2990694272
. 2469768297
.1985910580
.1539108309
.1037597972
.0355899767
.9537058630
.8588477113
LT7513176737
6312979477
.4989249576
.3543165264
. 1975838839
.0288375714
8481905627
.6557599982
.4516681825
.2360431692
.0090191031
.7707364133
.5213419139
.2609888410

OO0 OO = = == PNMNMNNMN NN N LIV WAL

65

"Exact"

.356%818863
.2990574928
. 2469404541
. 1985208041
.1538105814
.1035237024
.0%351211679
.9528616052
.8574327908
. 7490782651
.6279142481
.4940037256
.34738%6367
. 1880769223
.0160984812
.8314583468
.6341634845
.4242188553%
.2016280725
.9663938189
.7185181212
.458002533%6
. 1848482642



TABLES

Table 2.4b Errors in numerical eigenvalues e(p)=k2-k2(p)
for the Munk profile.

N= 268 321 402 509
ET= 2.8570 1.5820 1.6980 1.5970
J e(1) e(2) e(3) e(4)

1 -1.2E-09 -8.7E-10 -5.6E-10 -3.4E-10
5 -4.3E-08 -3.0E-08 -1.9E-08 -1.1E-08

9 ~-1.3E-07 -9.1E-08 -5.8E~08 -3.6E-08
13 -2.5E-07 -1.7E-07 -1.1E-07 ~7.0E-08
17 -3.6E-07 -2.5E-07 -1.6E-07 -1.0E-07
21 -8.5E-07 -5.9E-07 -3.7E-07 -2.3E-07
25 -1.6E-06 -1.1E-06 -7.5E-07 ~4 .6E-07
29 -3.0E-06 -2.1E-06 -1.3E-06 ~-8.4E-07
33 -5.0E-06 -3.5E-06 -2.2E-06 -1.4E-06
37 -8.0E-06 -5.6E-06 -3 .5E-06 -2.2E-06
41 ~-1.2E-05 -8.4E-06 -5.4E-06 -3.3E-06
45 -1.7E-05 -1.2E-05 ~7.8E-06 -4 .9E-06
49 -2.4E-05 -1.7E-05 -1.1E-05 ~-6.9E-06
53 -3.3E-05 -2.3E-05 -1.5E-05 -9.5E-06
57 -4 .5E-05 -3.1E-05 ~2.0E-05 -1.2E-05
61 -5.9E-05 ~4.1E-05 -2 .6E-05 -1.6E-05
65 -7.6E-05 ~-5.3E-05 -3.4E-05 -2.1E-05
69 -9.7E-05 -6.8E-05 -4 .3E-05 -2.7E-05
73 -1.2E-04 -8.5E-05 -5.4E-05 -3.4E-05
77 ~-1.5E-04 -1.0E-04 -6 .8E-05 -4 .2E-05
81 -1.8E-04 -1.2E-04 -8.3E-05 ~5.2E-05
85 -2.2E-04 -1.5E-04 -1.0E-04 -6.3E-05
89 -2.6E-04 -1.8E-04 -1.2E-04 -7.6E-05



TABLES
Table 2.5a Standard extrapolations K2(p,...
for the Munk profile.

N= 268 321 402
ET= 2.8570 125820 .6980

J k(1) k“(1,2) k°(1,2,3)

1 3.3563831469 3.3563818862 3.3563818863
5 3.2991005678 3.2990574681 3.2990574929
9 3.2470718156 3.2469403105 3.2469404543
13 3.1987746315 3.1985204080 3.1985208050
17 3.1541731417 3.1538096651 3.1538105878
21 3.1043750682 3.1035239564 3.1035237062
25 3.0368104016 3.0351229296 3.0351211782
29 2.9559009269 2.9528674236 2.9528616278
33  2.8625216362 2.8574472183 2.8574328376
37 2.7571242285 2.7491089916 2.7490783589
41  2.6400582045 2.6279734887 2.6279144302
45 2.5116449357 2.4941099533 2.4940040683
49 2.3722043%890 2.3475637009 2.3473842622
5% 2.2220665844 2.1883685870 2.1880780292
57 2.0615768883% 2.0165534170 2.0161003820
61  1.8910984691 1.8321456080 1.8314615196
65 1.7110133199 1.6351734994 1.6341686402
69 1.5217225003 1.4256679591 1.4242270274
73 1.323%6459219 1.203%6636063 1.2016407305
77 1.1172218518 0.9691998193 0.9664130130
81 0.9029062294 0.7223216203 0.7185466617
85 0.6811718530 0.4630804878 0.4580442121
89 0.4525074705 0.1915351288 0.1849081234

,q)=

OO QO == = =N MNDNMNMNMNDNLIVUWWRNWWNW

103xk2(p,...

509
.5970
K°(1,2,3,4)

.3563818863
.2990574928
.2469404541
.1985208041
.1538105814
. 1035237024
.0351211679
.9528616051
8574327907
.7490782648
.6279142476
.4940037247
. 3473836354
.1880769204
.0160984785
.8314583437
.6341634815
.4242188537
.2016280748
.9663938298
.7185181483
.4580025889
. 1848483664

67

,q)

OO0 OQC = — = 2NN MNDMNDMNDNMNDMNLIWLVWWNWL WD

"Exact"

.3563818863
.2990574928
.2469404541
. 1985208041
.1538105814
.1035237024
.0351211679
.9528616052
.8574327908
. 7490782651
.6279142481
.4940037256
.34738%6367
.1880769223
.0160984812
.8314583468
.6341634845
.4242188553
.2016280725
.9663938189
.7185181212
.4580025336
. 1848482642



TABLES 68

Table 2.5b Errors in standard extrapclations e(p,...,q)=k2—k2(p,...,q)
for the Munk profile.

N= 268 321 402 509
ET= 2.8570 1.5820 1.6980 1.5970

j e(1) e(1,2) e(1,2,3) e(1,2,3,4)

1 -1.2E-09 1.4E-13% -1.2E-15 -1.1E8-15

5 -4 .3E-08 2.4E-11 -2.0E-14 3.6E-16
9 -1.38-07 1.4E-10 ~-2.0E-13 2.7E-16
13 -2.5E-07 3.98-10 -8.3E-13 7.3E-16
17 ~-3.6E-07 9.1E-10 -6.3E-12 -2.8E-15
21 -8.5E-07 -2.5E-10 -3.7E-12 9.5E-15
25 -1.6E-06 -1.7E-09 -1.0E-11 2.6E-14

29 -3.0E-06 -5.8E-09 -2.2E-11 6.5E-14
33 -5.0E-06 -1.4E-08 -4.6BE-11 1.4E-13
37 ~-8.0E-06 -3.0E-08 -9.3E-11 2.8E-13
41 -1.2E~05 -5.9E-08 -1.8E-10 5.1E-13
45 -1.7E-05 -1.0E-07 -3.4E-10 8.6E-13
49 -2.4E-05 -1.8E-07 -6.2E-10 1.3E-12
53 -3.3E-05 -2.9E-07 -1.1E-09 1.9E-12
57 -4 .5E-05 -4 .5E-Q07 -1.9E-09 2.6E-12
61 -5.9E-05 -6.8E-07 -3.1E-09 3.1E-12
65 -7.6E-05 -1.0E-06 -5.1E-09 3.0E-12
69 -9.7E-05 -1.4E-06 -8.1E-09 1.6E-12
73 -1.2E-04 -2.0E-06 -1.2E-08 -2.3E-12
77 -1.5E-04 -2.8E-06 -1.9E-08 -1.0E-11
81 -1.8E-04 -3.8E-06 -2.8E-08 -2.7E-11
85 -2.2E-04 -5.0E-06 -4,18-08 -5.5E-11
89 -2.6E-04 -6.6E-06 -5.9E-08 -1.0E-10



TABLES

Table 2.6a Modified extrapolations ﬁz(p,...
for the Munk profile.

OCOOQO === =2MTN NN NN MWW LW WA

268
2;5570
K(1)

.3563831466
.2990987142
. 2470482249
.1986643410
. 1538384824
- 1035781970
.0351860538
. 9529294489
.8575023577
. 7491492323
6279865520
+4940774047
-34'74587792
.1881536448
.0161769201
.8315386543
.6342458266
.4243034120
.2017150380
.9664834027
. 7186105493
. 4580980504
. 1849471346

QOO0 === =N MNMNMNNNMNDLIWLIWWRWWW

321
1,5820
K<(1,2)

. 3563818862
.2990574680
. 2469403051
. 198520%530
.1538093742
. 1035228870
.0351198159
.9528597149
.8574302840
.7490750506
.6279102271
.4939987916
.3473776755
. 1880698104
.0160900849
.8314485212
.6341520712
4242056814
.2016129481
.9663765353
. 7184984482
.4579802163%
. 1848230202

OOOO === =M MNDMNN NN N WY W W

402
. 3:6980
k°(1,2,3)

.356%818863
.2990574929
.2469404543
. 1585208050
. 1538105877
. 1035237057
.0351211762
.9528616209
.8574328181
. 7490783095
.6279143168
.4940038278
. 3473837840
. 1880771289
.0160987644
.8314587278
.6341639886
4242195130
.2016289199
.9663948991
. 7185194851
.4580042413
. 1848503867

OCQOOO === =N MNDMNMN NN MNDWLWUWNWNW

,q)=103x§2(p,...

509
p1:5970
K°(1,2,3,4)
.356%818863
.2990574928
. 2469404541
. 1985208041
. 1538105814
.1035237024
.0%351211679
.9528616051
8574327906
. 7490782648
6279142475
.4940037245
.3473836349
.1880769193%
20160984763
.8314583394
6341634732
.4242188387
.2016280485
.9663937847
.7185180734
.4580024674
. 1848481739

69

,q)

QOO0 == ==L NN WWRWUWWW

"Exact"

.3563818863
.2990574928
.2469404541
. 1985208041
.1538105814
.1035237024
.0351211679
.9528616052
.8574327908
. 7490782651
.6279142481
.4940037256
34773836367
.1880769223
.0160984812
.8314583468
.6341634845
.4242188553
.2016280725
.9663938189
.7185181212
.4580025336
. 1848482642



TABLES 70

Table 2.6b Errors in modified extrapolations é(p,...,q)=k2—§2(p,...,q)
for the Munk profile.

N= 268 321 402 509
ET= 2.8570 1.5820 1.6980 1.5970

J &(1) 8(1,2) €(1,2,3) &(1,2,3,4)
1 -1.2E-09 1.4E-13 -1.2E-15 -1.1E-15

5 -4 .1E-08 2.4E-11 -2.0E-14 %.6E-16

9 -1.0E-07 1.4E-10 -2.0E-13 3.6E-16
13 -1.4E-07 4.5E-10 ~-8.2E-13 8.3E-16
17 -2.7E-08 1.2E-09 -6.2E-12 ~-2.9E-15
21 -5.4E-08 8.1E-10 -3.2E-12 9.7E-15
25 -6,.4E-08 1.3E-09 -8.%E-12 2.7TE-14
29 -6.7E-08 1.8E-09 -1.5E-11 6.7E-14
33 -6.9E-08 2.5E-09 -2.7TE-11 1.5E-13
37 -7.0E-08 3.2E-09 -4 .4E-11 3.1E-13
41 -7.2E-08 4.0E-09 -6.8E-11 5.9E-13
45 -7.3E-08 .9E-09 -1.0E-10 1.0E~12

4
49 -7.5E-08 5.9E-09 -1.4E-10 1.8E-12
53 -7.6E-08 7.1E-09 -2.0E-10 3.0E-12
57 -7.8E-08 8.3E-09 -2.8E-10 4.8E-12
61 -8.0E-08 9.8E-09 -3.8E-10 T.4E-12
65 -8.2E-08 1.1E-08 -5.0E-10 1.1E-11
69 -8.4E-08 1.3E-08 -6.5E~10 1.6E-11
73 -8.6E-08 1.5E-08 -8.4E-10 2.4E-11
77 -8.9E-08 1.7E-08 -1.0E-09 3.4E~11
81 ~-9.2E-08 1.9E-08 -1.3E-09 4.7E-11
85 -9.5E-08 2.2E-08 -1.7E-09 6.6E-11
89 -9.8E-08 2.5E-08 -2.18-09 9.0E-11



TABLES

Tabl

3 =
nou

tx3

O O30 W =0

Tabl

[c3}

e

e

= =

O O30 WD .

2.7a Numerical eigenvalues Kz(p)=102xk2(p)
for the double-duct problem.

120 144 180 228
L1670 .Q980 .Q910 ©. 1000
k(1) K<(2) K“(3) K°(4)

.6526983%271 1.6526954868 1.6526931649 1.6526916108
6383354414 1.638%226852 1.6%83122643 1.638305293%1
6341614265 1.6341595637 1.6341580406 1.6341570211
6252176406 1.6251890186 1.6251656593 1.6251500439
.6225808340 1.622572763%5 1.6225661692 1.6225617570
.6136840516 1.6136407010 1.613605%859 1.6135818105
.6122902279 1.6122728675 1.6122586894 1.6122492065
6046798472 1.6046385327 1.6046050707 1.6045828295
.6032657934 1.6032334355 1.603206933%8 1.60%1891707

2.7b Errors in numerical eigenvalues e(p)=k2—k2(p)

for the double-duct problem.

120 144 180 228

1670 .0980 .0910 .1000

e(1) e(2) e(3) e(4)
-9.2E-08 -6.4E-08 -4.1E-08 -2.5E-08
-4 .1E-07 -2 .8E-07 -1.8E-07 -1.1E-07
-6.0E-08 -4.2E-08 -2.7E-08 -1.6E-08
-9.3E-07 -6.4E-07 -4 AE-07 -2.5E-07
-2.6E-07 -1.8E-07 -1.1E-07 -7.2E-08
-1.4E-06 -9.7E-07 -6.2E-07 -3.8E-07
-5.6E-07 -3.9E-07 -2.5E-07 -1.5E-07
-1.3E-06 -9.2E-07 -5.8E-07 -3.6E-07
-1.0E-06 -7.3E-07 -4.7E-07 -2.9E-07

eh eh e A ek —h —h b

A

"Exact"

.6526890414
.6382937740
.6341553353
.6251242610
.6225544651
.6135429415
.6122335402
.6045463297
.60%1597588



TABLES

Table 2.8a Modified extrapolations ﬁz(p,...
for the double-duct problem.

=

W O30~ WN =3
ek b A b e e

Table 2.8b Errors in modified extrapolations &(p,..

=

OWO~JowmsUulhh—0 a3

120
L1670
R2(1)

.6526983262
.6383353701
.6341608761
.6252155264
.6225750578
.6136711647
.6122650958
.6046%53141
.6031923497

—d b eed ~h - -k —h 2 o

144
+9980
K<(1,2)

.6526890318
.638293%6937
.6341553299
.6251239683
.6225544197
.61%5421709
.6122333952
.6045445964
.60%1598105

—-— eed b ah e h e —h e

180
A2091o
K<(1,2,3)

.6526890414
.6382937742
.6341553353
.6251242621
.6225544652
.613542944%
6122335413
.6045463398
.6031597595

for the double-duct problem.

120
.1670

e(1)

.2E-08
.1E-07
.5E-08
.1E-07
.OE-07
-1.2E-06
.1E-07
.8E-07
.2E-07

144
.0980
£(1,2)
9.6E-11
8.0E-10
5.3E-11
2.9E-09
4.5E-10
7.7B-09
1.4E-09
1.7E-08
-5.1E-10

,a)

=102xﬁ2(p,...

228
N .1000
k2(1,2,3,4)
.6526890414
.6382937740
.6341553353
.6251242610
6225544651
.6135429414
6122335402
.6045463297
.6031597588

180 228

.0910 . 1000
8(1,2,3) &(1,2,3,4)
-1.6E-13 -3.6E-15
-2.38-12 2.9E-14
-7.1E-14 -2.9E-15
-1.1E~-11 3.5E-14
-9.9E-13 0.
-2.8E-11 2.3E-13
-1.0E-11 -5.0E-14
~1.0E~10 -1.4E-13
~-6.5EB-12 6.1E-13

72

,q)

A
.,a)=k2-%%(p, ...

"Exact”

.6526890414
.6382937740
6341553353
.6251242610
.6225544651
.6135429415
.6122335402
.6045463297
.6031597588

,q)



TABLES

Table 2.9 Comparison of execution times using different techniques to
generate initial guesses.

Number of mesh points 268 321 402 509
Bisection 3.0 3.4 4.3 5.4
1 point RE 2.8 2.2 2.7 3.4
1 point MRE 2.8 1.5 1.9 2.4
N point RE 3.0 2.3 2.2 2.4
N point MRE 2.9 1.6 1.7 1.6



Numerical eigenvalues

the Munk profile with

TABLES

Table %.1a

N= 77
ET= .5990

J k(1)

1 1.6683%910356
2 1.6561391651
3 1.6446288764
4 1.6339082100
5 1.6245773713
6 1.6146308702
7 1.6011227064
8 1.5844601893
9 1.5650044376
10 1.5428093778
11 1.5178372599
12 1.4900109981
13 1.4592255438
14 1.425348443%6
15 1.3882160453
16 1.3476266485
17 1.303%3303010
18 1.2550140114
19 1.2022800638
20 1.1446133203
21 1.0813299784
22 1.0114931761
23 0.9337648270
24 0.8461226163
25 0.7452526106
26 0.6249384014

92
.2950
K(2)

.6683900317
.6561344266
.6446175231
.6338892127
6245529575
.6145837542
.6010286247
.5842931934
.5647281245
5423750916
.5171819688
.4890545443
.4578672391
.4234628209
.3856474504
.3441821866
.2987703811
.2490392697
.1945126259
.1345688075
0683735441
.9947660697
.9120516611
8175847393
. 7068053509
.5704642723

K(p)=100xk(p)
a shear flow.

115
.3320
K(3)

.6683891873
.6561304410
6446079753
.6338732459
6245324471
6145440886
6009493706
.5841524299
.5644950558
.5420084983
.5166283592
.4882457513
4567174252
.4218647112
3834674956
. 3412541901
.2948868579
2439393376
. 1878643783
. 12594247751
.0571983426
.9802559212
.8930654770
.7923296454
.6720821039
.5190682563

for

146
.3740
K(4)

.6683886180
6561277537
.6446015384
.63%8624864
.6245186302
.6145173250
.6008958698
.5840573622
.5643375649
.5417606387
.5162538167
.4876981754
4559383404
.4207808749
.3819874827
.3392638601
.2922431553
.2404615173
. 1833210798
. 1200317544
.0495149799
.9702338116
.8798657902
.7745922487
.6472466223
.4806930%62

74

"Exact"

. 6683876881
.656123%648
6445910275
.6338449252
.6244960865
6144735835
. 6008083855
.58%9018298
.5640797632
5413546617
5156399269
.4867999970
.4546593258
.4189998084
.3795526272
.3359851289
.2878813090
.2347127099
1757938037
.1102106641
.0367004770
.9534327835
.8575717465
. 7442700035
.6037941518
.4090696885



TABLES

Table 3.1b Errors in numerical eigenvalues e(p)=k-k(p) for
the Munk profile with a shear flow.

77 92 115 146
.5990 .2950 .33%20 3740
e(1) e(2) e(3) e(4)
-3.3E-08 -2.3E-08 -1.5E-08 -9.3E-09
-1.6E-07 -1.1E-07 =-7.1E-08 -4.4E-08
-3.8E-07 -2.6E-07 -1.7E-07 -1.1E-07
.3E-07 -4.4E-07 -2.8E-07 =-1.8E-07
~8.1E-07 -5.7E-07 -3.6E-07 -2 . 3E=-07
-1.6E-06 -1.1E-06 -7.1E-07 -4.4E-07
-3.1E-06 -2.2E-06 -1.4E-06 -8.7E-07
-5.6E-06 -3.9E-06 -2.5E-06 -1.6E-06
-9.2E-06 -6.5E-06 -4 .2E-06 -2.6E-06

=

O 0 ~1OU £ VN = 1]
i
1o

10 -1.5E-C5 ~1.0E-05 -6 .5E-06 -4 .1E-06
11 -2 .2E-05 -1.5E-05 -9.9E-06 -6.1E-06
12 ~3.2E-05 -2.3E-05 -1.4E-05 -9.0E-06
13 -4 .6E-05 -3.2E-05 -2.1E-05 -1.3E-05
14 ~-6.3E-05 -4 .5E-05 -2.9E-05 -1.8E-05
15 -8.7E-05 -6.1E-05 -3.9E-05 -2.4E-05
16 -1.2E-04 -8.2E-05 -5.3E-05 -3.3E-05
17 -1 .5E-04 -1.1E-04 -7.0E-05 -4 .4E-05
18 -2.0E-04 -1.4E-04 -9.2E-05 -5.7E-05
19 -2 .6E-04 -1.9E-04 -1.2E-04 -7.5E-05
20 -3.4E-04 -2.4E-04 -1.6E-04 -9.8E-05
21 -4 .5E-04 -3.2E-04 -2.0E-04 -1.3E-04
22 -5.8E-04 -4 .1E-04 -2.7E~04 -1.7E-04
23 -7.6E-04 -5.4E-04 -3.5E-04 -2.2E-04
24 -1.CE-03 -7.2E-04 -4.8E-04 -3.0E-04
25 ~-1.4E-03 -1.0E-03 -6.8E-04 -4 .3E-04
26 -2 .2E-03 -1.6E-03 -1.1E-03 ~7.2E-04



TABLES
Table 3.2a Standard extrapolations K(p,...,q)=100xk(p,...
for the Munk profile with a shear flow.
N= 77 92 15 146
ET= .5990 .2950 .3320 . 3740
J K(1) K(1,2) k(1,2,3) k(1,2,3,4)
1 1.6683910356 1.668387683%8 1.6683876881 1.6683876880
2 1.6561391651 1.6561233441 1.6561233648 1.6561233648
3 1.6446288764 1.6445909695 1.6445910274 1.6445910275
4 1.6339082100 1.6338447809 1.6338449253 1.6338449252
5 1.6245773713 1.6244958572 1.6244960873 1.6244960865
6 1.6146308702 1.6144735565 1.6144735845 1.6144735835
7 1.6011227064 1.6008085813 1.6008083873 1.6008083855
8 1.5844601893 1.5839026141 1.5839018338 1.5839018298
9 1.5650044376 1.5640818679 1.5640797715 1.5640797632
10 1.5428093778 1.5413593589 1.5413546784 1.5413546616
11 1.5178372599 1.5156493374 1.5156399604 1.5156399268
12 1.4900109981 1.4868175367 1.4868000635 1.4867999969
13 1.4592255438 1.4546903600 1.4546594572 1.4546593%258
14 1.425348443%6 1.4190526208 1.4190000663 1.4189998086
15 1.3882160453 1.3796398766 1.3795531306 1.3795526280
16 1.3476266485 1.3361260863 1.3359861084 1.3359851318
17 1.3033303010 1.2881053849 1.287883%2134 1.2878813177
18 1.2550140114 1.2350652091 1.2347164262 1.2347127344
19 1.2022800638 1.1763457072 1.1758011263 1.1757938710
20 1.1446133203 1.1110761385 1.1102253491 1.1102108488
21 1.0813299784 1.0380703099 1.0367307852 1.0367009979
22 1.0114931761 0.9556437762 0.9534982038 0.9534343374
23 0.9337648270 0.8612676923 0.8577232049 0.8575768475
24 0.8461226163 0.7508387541 0.7446630029 0.7442896912
25 0.7452526106 0.6168827464 0.6050446684 0.6038963148
26 0.6249984014 0.4429167965 0.4153298464 0.4101067387

,q)

76

"Exact"

.6683876881
.6561233%648
.6445910275
.6338449252
6244960865
.6144735835
. 6008083855
.5839018298
5640797632
5413546617
5156399269
.4867999970
.4546593258
.4189998084
3795526272
.3359851289
.2878813090
.2347127099
1757938037
.1102106641
.0367004770
-9534327835
.8575717465
. 7442700035
.6037941518
.4090696885



TABLES

Table 3.2b Errors in standard extrapolations e(p,...,q)=k-k(p,...,q)
for the Munk profile with a shear flow.
N= 77 92 15 146
ET= .5990 .2950 . 3320 .3740
j e(1) e(1,2) e(1,2,3) e(1,2,3,4)
1 -3.3E-08 4.2E-11 -7.2E-14 9.2E-14
2 -1 .6E-07 2.1E-10 3.6E-13 4.1E-15
3 -3.8E-07 5.8E-10 4.4E-13 -1.6E-13
4 -6.3E-07 1.4E-09 -1.2E8-12 7.9E-15
5 -8.1E-07 2.3E-09 -7.4E-12 1.5E-14
6 -1.6E-06 2.7E-10 -9.5E-12 2.8E-14
7 -3.1E-06 -2.0E-09 -1.8E-11 4.4E-14
8 -5.6E-06 -7.8E-09 -4 .CE-11 1.0E-13
9 -9.2E-06 -2.1E-08 -8.3E~11 2.18-13
10 -1 .5E-05 ~4 . 7TE~08 -1.7E-10 3.8E-13
11 -2.2E-05 -9.4E-08 -3.3E-10 5.76-13
12 -3.2E-05 -1.8E-07 -6.7E-10 7.5E-13
13 -4.6E-05 -3.1E-07 -1.3B-09 6.4E-13
14 -6.3E-05 -5.3E-07 -2.6E-09 -1.2B-12
15 ~-8.7E-05 -8.TE-07 ~-5.0E-09 -8.1E-12
16 ~-1.2E-04 -1 .4E-06 -9.8E-09 -2.9E-11
17 -1.5E-04 -2.2E-06 -1.9E-08 -8.7E-11
18 -2.0E-04 -3.5E-06 ~-%.7E-08 ~2.5E-10
19 -2.6E-04 -5.5E-06 -7.3E-08 -6.7E-10
20 -3.4E-04 -8.7TE-06 -1.5E-07 -1.8E-09
21 -4 .5E-04 -1.4E-05 -3.0E-07 -5.2E~09
22 -5.8E-04 -2.2E-05 -6.5E-07 -1.6E-08
23 ~-7.6E-04 -3.7E-05 -1.5E-06 -5.1E-08
24 -1.0E-03 -6.6E-05 -3.9E-06 -2 .0E-07
25 -1.4E-03 -1.3E-04 -1.3E-05 -1.0E-06
26 -2.2E-03 -3.4E-04 -6.3E-05 -1.0E-05



Modified extrapolations K(p,-.

..,q)=100x§(p,...

for the Munk profile with a shear flow.

TABLES
Table 3.3a
N= 7
ET= .§99O
J k(1)
1 1.6683910253
2 1.656138%254
3 1.6446223804
4 - 1.6338831535
5 1.6245085270
6 1.6144761774
7 1.6008183841
8 1.5839153345
9 1.56409493%%4
10 1.5413708831
11 1.5156569760
12  1.4868177918
13 1.4546778378
14 1.4190190244
15 1.3795725261
16  1.3360056617
17 1.2879023731
18 1.2347341097
19 1.1758151826
20 1.1102313793
21 1.0%6719%521
22 0.9534475727
23 0.8575778368
24 0.7442566961
25 0.6037307156
26 0.4088149578

92
.2950
k(1,2)

.6683876838
6561233440
6445909679
6338447688
6244958020
6144733694
.6008080613
.5839013570
.5640791280
-5413538417
5156388948
4867987209
4546577692
.4189979290
«3795503753
. 3359824453
. 2878781206
. 2347089234
. 1757892933
.1102052468
.0366938584
.9534244224
.8575604638
.T7442525985
.6037587054
.4089357245

115
. +3320
k(1,2,3)

.6683876881
.6561233648
.6445910274
.6338449253
6244960873
6144735844
6008083870
.5839018327
.5640797684
-5413546700
5156399399
.4868000164
.4546593540
4189998480
.3795526817
. 3359852024
.2878814063
.234°7128367
1757929657
.1102108660
.0367007176
- 9534330408
.8575719198
. 7442696390
.6037905600
.4090310095

OO OO O — —% ci it d md od eh eh o e ke e o o o e s

146
. 3740
K(1,2,3,4)
.6683%876880
.656123%648
6445910275
.6338449252
.6244960865
6144735835
.6008083%855
.583%9018298
.5640797632
5413546616
.5156399268
. 4867999969
. 4546593256
.4189998080
3795526265
3359851278
. 2878813073
2347127073
.1757937999
.1102106585
0367004686
.9534327696
.8575717185
7442699161
.6037936151
40906017306

,q)

OO OO O =+ =4 & =% s —h o b h s A ok ea e e

8

"Exact"

.6683876881
.6561233648
6445910275
.6338449252
6244960865
.6144735835
. 6008083855
.5839018298
5640797632
5413546617
.5156399269
.4867999970
.4546593258
-4189998084
3795526272
3359851289
.2878813090
.2347127099
- 1757938037
.1102106641
.0367004770
.9534327835
8575717465
< 7442700035
.6037941518
. 4090696885



TABLES

Table 3.3b Errors-in modified extrapolations 8(p,...,q)=k-k(p,-..,q)
for the Munk profile with a shear flow.

N= 7 92 115 146

T= .5990 .2950 .3320 . 3740

J &(1) 8(1,2)  &(1,2,3) &(1,2,3,4)
1 -3.3E-08 4.2E-11 -7.1E-14 9.1E-14
2 -1.5E-07 2.1E-10 3.6E-13 4.1E~15
3 ~3.1E-07 6.0E-10 4.4E-13 -1.6E-13
4 -3.8E-07 1.6E-09 -1.2E-12 9.2E-15
5 ~-1.2E-07 2.8E-09 -7.3E-12 1.4E-14
6 -2.6E-08 2.1E-09 ~8.7E~12 2.8E-14
7 -1.0E-07 3.2E-09 ~1.5E~11 4.5E-14
8 -1.4E-07 4.7E~09  -2.9E-11 1.1E-13
9 -1.5E-07 6.4E-09 -5.1E-11 2.3E-13
10 -1.6E-07 8.2E-09 -8.4E-11 4.5E-13
11 -1.7E-07 1.0E-08 =~1.3E~10 7.9E-13
12 -1.8E~07 1.3E-08 -1.9E-10 1.4E-12
13 -1.9E-07 1.6E-08 -2.8E-10 2.7E-12
14 -1.9E-07 1.9E-08 ~4.0E-10 4.4E-12
15 ~-2.0E-07 2.3E~08 -5.4E-10 T.1E~12
16 -2.1E-07 2.7E-08 -7.3E-10 1.1E-11
17 -2 .1E-07 3.2E-08 -9.7E-10 1.7E-11
18 -2.1E-07 3.8E-08 -1.3E~-09 2.5E-11
19 -2.1E-07 4.5E-08 -1.6E-09 3.7E-11
20 -2.1E-07 5.4E-08 -2.0E-09 5.6E-11
21 -1.9E-07 6.6E-08 -2.4E-09 8.4E-11
22 -1.5E-07 8.4E-08 -2 .6E-09 1.4E-10
23 -6.1E-08 1.1B-07 -1.7E-09 2.8E-10
24 1.3E-07 1.7TE-07 3.6E-09 8.7E~10
25 6.3E-07 3.5E-07 3.6E-08 5.4E-09
26 2.5E-06 1.3E-06 3.9E-07 9.6E-08



TABLES

Table 3.4 Comparison of eigenvalues for Munk profile with and without
a shear flow.

J Stationary Convected Change
1 0.0166895 0.0166839 0.0000056
2 0.0165659 0.0165612 0.0000046
3 0.0164497 0.0164459 0.0000038
4 0.0163414 0.0163385 0.0000030
5 0.0162472 0.0162450 0.0000023
6 0.0161474 0.0161447 0.0000027
7 0.0160112 0.0160081 0.000003%1
8 0.0158424 0.0158390 0.0000033
9 0.0156442 0.0156408 0.0000034
10 0.0154170 0.0154135 0.0000035
1" 0.0151599 0.0151564 0.0000035
12 0.0148716 0.0148680 0.0000036
13 0.0145502 0.0145466 0.000003%6
14 0.0141936 0.0141900 0.0000036
15 0.0137991 0.0137955 0.0000036
16 0.013%635 0.0133599 0.0000036
17 0.0128824 0.0128788 0.0000036
18 0.0123507 0.01234M 0.0000036
19 0.0117616 0.0117579 C.0000036
20 0.0111057 0.0111021 0.0000036
21 0.0103706 0.0103%670 0.000003%6
22 0.0095380 0.0095343 0.0000036
23 0.0085794 0.0085757 0.0000036
24 0.0074463 0.0074427 0.0000036
25 0.0060416 0.0060379 0.0000036
26 0.0040943 0.0040907 0.0000036



TABLES

Table 3.5a

=

OW ORIV UWNND O ] =

—_

Tabl

e3]
= =

—_

O = === MN

e

OWO~TITON NN

the aerocacoustic precblem.

29
.1130
K(1)

-9791779468
.6652423%256
.4622206634
. 3007170774
-1574305739
.9976917863
. 7931851971
.5320342062
. 1987109449
. 7561207089

3.50 Errors in numerical eigenvalues e(p)=k-k(p) for

O—= === N

34

.0600

k(2)
.9786591353
.6644571992
.4608812904
.2988227138
. 1546426081
.9925412298
. 7832139036
.5132312801
.16351123%61
.6866601449

O=>2 === N

43

.0640

K(3)
.9781475969
6636822541
4595613407
2969593731
.1518887427%
.9874066359
.T7731929427
.4941512707
. 1272494549
.612580393%7

the aerocacoustic problem.

29
.1130
e(1)
.9E-02
.8E-02
.8E-02
.8E-02
.OE-01
. 9E-01
.TE-0O1
.0E-01
.3E+00
.8E+00

34
.0600
e(2)
«35-02
.0E-02
.5E-02
.9E-02
. 3E-02
.4E-01
. TE-01
.2E-01
.9E-01
.1E+00

Numerical eigenvalues K(p)=0.1xk(p)

Q=+ = 2PN N

Hy

or

55
.0780
K(4)

.9778198593
.6631851931
.4587157468
«2957674391
.1501207769
.9840851629
7666673184
.4816262128
. 1031370029
.5617222139

43 55

.0640 .0780

e(3) e(4)
-8.4E-03  -5.1E-03
-1.3E-02 ~7.7TE-03
~-2.2E-02 -1.3E-02
-3.0E-02 ~-1.8E-02
-4 .5E-02 -2.8E-02
-8.5E-02 -5.2E-02
-1.7E-01 -1.0E-01
-3 .2E-01 -2.0E-01
-6.3E-01 -3.9E-01
-1.4E+00  -8.5E-01

O - = = 2NN NN

81

"Exact"

9773107935
.6624120617
.4574020786
.2939183407
1473676297
. 9788730950
. 7563582522
.4616762399
.0642062148
.4765135425



TABLES 82
Table 3.6a Standard extrapclations K(p,...,q)=0.1xk(p,...,q)
for the aeroacoustic problem.
N= 29 34 43 55
ET= .1130 0600 .0640 .0780
o e o n AN N 2 R S R Y e T~ T TS~ e T e R
6 1.997691786% 1.9787900613 1.9788845456 1.9788727947 1.9788730950
T 1.7931851971 1.7565921328 1.756380723%32 1.7563577390 1.7563582522
8 1.5320342062 1.4630304519 1.4617340802 1.4616756089 1.4616762%99
9 1.1987109449 1.0695336009 1.0644474316 1.0642098279 1.0642062148
10 0.7561207089 0.5012114646 0.4788249535 0.4766792927 0.4765135425
Table 3.6b Errors in standard extrapolations e(p,...,q)=k-k(p,...,q)
for the aerocacoustic problem.
N= 29 34 43 55
ET= .1130 .0600 .0640 .0780
h e(1) e(1,2) e(1,2,3) e(1,2,3,4)
1 -1.9E-02 3.7E-04 -4 .4E-06 3.3E-09
2 -2.8E-02 5.1E-04 ~1.3E-05 2.5E-07
3 -4 ,8E-02 9.7E-04 -2.6E-05 6.0E-07
4 -6.8E-02 1.5E-03 -4 .6E-05 1.1E-06
5 -1 .0E-01 1.7B-03 -7.3E-05 1.9E-06
6 -1.9E-01 8.3E-04 -1.1E-04 3.0E-06
7 -3.7E-01 -2.3E-03 -2.2E-04 5.1E-06
8 -7.0E-01 -1.4E-02 -5.8E-04 6.3E8-06
9 -1.3E+00 -5.3E-02 -2.4E-03 -3.6E-05
10 -2 .8E+00 -2.5E-01 -2.3E-02 -1.7E-03



TABLES 83
Table 3.7a Modified extrapolations ﬁ(p,...,q)=O.1xﬁ(p,...,q)
for the aercacoustic problem.
N= 29 34 43 55
ET= .1130 .0600 .0640 N .0780
j k(1) ®(1,2) R(1,2,3) k(1,2,3,4) "Exact"
1 2.9791769857 2.9772739907 2.9773112352 2.9773107932 2.9773107935
2 2.6651637893% 2.6623%3609853 2.6624133592 2.66241203%66 2.6624120617
3 2.4616036823 2.4573042366 2.4574046920 2.4574020189 2.4574020786
4 2.298278803%9 2.2937558728 2.2939228992 2.2939182293 2.2939183407
5  2.1504915721 2.1471533%3640 2.1473748036 2.1473674436 2.1473676297
6 1.9813120748 1.9786146653 1.9788836762 1.9788727919 1.9788730950
7 1.7586553227 1.7560117723 1.7563755504 1.7563577060 1.7563582522
8 1.4637175150 1.4612162097 1.4617039503 1.4616752223 1.4616762399
9 1.0655171180 1.0635790669 1.0642442928 1.0642042047 1.0642062148
10 0.4749251844 0.4751279471 0.4764553170 0.4764974279 0.4765135425
Table 3.7b Errors in modified extrapolations a(p,...,q)=k-k(p,-..,q)
for the aerocacoustic problenm.
N= 29 34 43 55
ET= .1130 .0600 .0640 .0780
J (1) 8(1,2)  8(1,2,3) (1,2,3,4)
1 -1.9E-02 2.7TE-04 -4 .4E-06 3.3E-09
2 -2 .8E-02 5.1E~-04 -1.3E-05 2.5E-07
3 -4 .2E-02 9.8E-04 -2.6E-05 6.0E-07
4 -4 . 4E-02 1.6E-03 -4 .6E-05 1.1E-06
5 -%3.1E-02 - 2.1E-03 -7.2E-05 1.9E-06
6 -2.4E-02 2.6B-03 -1.1E-04 3.0E-06
7 -2.3E-02 %.5E-03 -1.7E-04 5.5E-06
8 -2.0E-02 4.6E-03 -2.8E-04 1.0E-05
9 -1.3E-02 6.3E-03 -3 .8E-04 2.0E-05
10 1.6E-02 1.4E-02 5.8E-04 1.6E-04



TABLES

Table

N1/N2

ET=

OCOO0O0O0O0O0O0O0COOOO = b 4 s

4.1a

Numerical eigenvalues

for the shallow water

100/300
7'8870
K<(1)

. 7805178446
.6848824426
.5287832832
+3164975109
.0562214624
. 7688670707
.4831481449
.3851153068
- 3582958781
-3193730866
. 2884255951
- 2724371949
2465595600
. 1851786040
-1381986509
.0836556721
.0486839034
.0032876241

1
1
1
1
1
0.
0
0

0
0]
0
0]
0.
0
0
0
0
0

150/450
5.7940
K<(2)

. 7806674179
.6854136651
.5297586069
.3177504076
.0573243701
7692402970
4824747429
.385106540%
3582725441
.31934493%29
2882465840
.2721226385
2462779763
.1847981253
. 1375707205
.0819155609
.0462087151
.0024746046

icleloNoRoNoNoNoNoNoNoNe Ko I S

Kz(p)=100xk2(p)

problem.

200/600
4.7920
K<(3)

. 7807197867
. 6855997232
.5301003437
.3181895437
.0577109025
. 7693704899
. 4822376204
.3851034540
.3582643672
-3193351361
. 2881841900
.2720129433%
2461792850
- 1846653715
- 1373512051
.0813270671
-0453006868
.0022004628

ielelooBoNoNoNoNeoNeoNoNo N o RGN

300/900
6.5560
(4)

- 7807571989
. 6857326642
-5303445619
. 3185034122
.0579871623
. 7694633464
-4820677931
.3851012435
.3582585232
.3193281560
.2881397014
-2719347156
.2461087480
- 1845706765
< 1371944841
.0809132325
-0446384773
. 0020083102

eNeloNoloNoNoNoReoRoNoNo Ko QiGN

84

Exact

. 7807871324
.68583%90427
. 5305400092
-3187546275
.0582082698
. 7695375485
.4819316589
3850994716
3582538459
«3193225825
.2881041566
. 2718722087
2460522925
- 1844949975
. 1370691507
.0805860636
.0441004226
.0018569072
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Table 4.1b Errors in numerical eigenvalues e(p)=k2-k2(p)
for the shallow water problem.

N1/N2  100/300 150/450 200/600 300/900
ET= 7.9870 5.7940 4.7920 6.5560

J e(1) e(2) e(3) e(4)
1 2.7E-06 1.2E-06 6.7E-07 3.0E-07
2 9.6E-06 4.3E-06 2.4E-06 1.1E-06
3 1.8E-05 7.8E-06 4.4B-06 2.0E-06
4 2.3E-05 1.0E-05 5.7E-06 2.5E-06
5 2.0E-05 8.8E-06 5.0E-06 2.2E-06
6 6.7E-06 3.0E-06 1.7E-06 7.4E-07
7 -1 .2E-05 -5.4E~-06 -3.1E-06 -1.4E-06
8 -1 .6E-07 -7.1E-08 -4 .0E-08 -1 .8E-08
9 -4 ,2E-07 -1.9E-07 -1.1E-07 -4 .7E-08
10 -5.1E-07 -2.2E-07 -1.3E-07 -5.6E-08
11 -3.2EB-06 -1.4E-06 -8.0E-07 -3.6E-07
12 -5.6E-06 -2.5E-06 -1.4E-06 -6.3E-07
13 -5.1E-06 -2.3E~06 -1.3E~06 -5.6E-07
14 -6.8E-06 -3.0E~06 -1.7E-06 -7.6E-07
15 -1.1E-05 ~-5.0E-06 -2 .8E-06 ~-1.3E-06
16 -3.1E-05 -1.3E-05 -7.4E-06 -3.3E-06
17 -4 .6E-05 -2.1E-05 -1.2E-05 -5.4E-06
18 -1 .4E-05 -6.2E-06 -3.4E-06 -1.5E-06



TABLES

Table

N1/N2
ET=

-—
CWOWOIOUTHWN — e

~N O HAWNN =
COO0O0OO0ODO0OO0O0COCOOO = = s s

(o0

4.2a  Standard extrapolations K2(p,...
for the shallow water problem.

100/300
7.2870
K<(1)

.7805178446
.6848824426
.5287832832
.3164975109
0562214624
. 7688670707
.4831481449
.3851153068
. 3582958781
.3193730866
. 2884255951
. 2724371949
. 2465595600
. 1851786040
. 1381986509
.0836556721
.0486839034
.003%2876241

el eNoNoNoNoNoNe

150/450

3:7940

K<(1,2)
. 7807870766
.6858386431
5305388658
.3187527249
.0582066962
. 7695388780
.481936021%
. 3850995272
3582538770
+3193224099
.2881033751
2718709934
2460527093
. 1844937424
. 1370683762
.0805234721
.0442285645
.0018241889

eiclclioNoNoReNoNoNoNeNoXe RN

200/600
4:7920
K=(1,2,3)

. 7807871316
. 6858390400
.5305400043
-3187546214
.0582082648
. 7695375483
-4819316578
3850994719
- 3582538465
.3193225836
.2881041670
.2718722109
2460522917
- 1844950031
. 1370691693
.0805860855
.0441014410
.0018559300

,q)

eielcfoNoloNoNoNoRoNo NoXe RN

=100xk>(p, . .

300/900
6.5560
K2(1,2,3,4)
1807871324
6858390427
.5305400092
. 3187546275
.0582082698
. 7695375485
.4819316589
.3850994716
.3582538459
+ 3193225825
.2881041566
.2718722088
.2460522925
. 1844949974
.1370691506
.0B05860745
.0441004263
.0018568930

»q

86

)

Exact
. 7807871324
6858390427
.5305400092
. 3187546275
.0582082698
. 7695375485
4819316589
.3850994716
3582538459
.3193225825
.2881041566
.2718722087
.2460522925
. 1844949975
1370691507
.0805860636
.0441004226
.0018569072
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Table 4.2b Errors in standard extrapolations e(p)=k2-k2(p,...,q)
for the shallow water problem.

N1/N2 100/300 150/450 200/600 300/900
ET= 7.9870 5.7940 4.7920 6.5560

J e(1) e(1,2)  e(1,2,3) e(1,2,3,4)
1 2.7E-06 5.6E-10 7.5E-12 2.1E-14
2 9.6E-06 4.0E-09 2.7E-11 7.0E-14
3 1.8E-05 1.1E-08 4.9E-11 1.2E-13

4 2.3E-05 1.9E-08 6.1E-11 1.2E-13
5 2.0E-05 1.6E-08 4.9E-11 8.1E-14
6 6.7E-06 -1.3E-08 2.5E-12 1.2E-14

7 -1.2E-05 -4.4E-08 1.2E-11 4.8E-14

8 -1.6E~07 <5.6E~10 ~3.4E-12 ~-2.5E-16

9 -4 .2E-07 -3.1B-10 -5.9E-12 ~-5.78-15

10 -5.1E-07 1.7E-09  -1.1E-11 3.2E-14
11 ~3.2E-06 7.8E-09 -1.0E-10 3.0E-13
12 -5.6E-06 1.2E-08 -2.2E-11 -2.6E-13

13 -5.1E-06 -4 .2E-09 8.1E-12 -1.3E-14
14 -6.8E-06 1.3E-08  -5.7E-11 9.2E-14
15 ~-1.1E-05 7.7E-09 -1.9E-10 1.0E-12
16 -3.1E-05 6.3E-07 -2.2E-10 -1.1E-10
17 -4 .6E-05 -1.3E-06 -1.0E-08 -3.7E-11

18 -1.4E-05 3.3E-07 9.8E-09 1.4E-10



TABLES

4.3a Numerical eigenvalues K2(p)=104xk2(p)
for the Munk profile with an elastic bottom.

Table
N1/N2 200/200
ET= 8.9040
J K(1)
1 2.9038346179
2 2.7853806272
3 2.7442802497
4 2.7058505588
5 2.668885274%
6 2.6298754557%
T 2.5846045345
8 2.5314592539
9 2.4703582714
10 2.4014708645
11 2.3249814954
12 2.2411039069
13 2.1501327390
14 2.0525319298
15 1.9491021271
16 1.8412749628
17 1.7313287095
18 1.6211197497
19 1.5087252241
20 1.3932928320
21 1.3017067689
22 1.2168448262
23 1.0851477799
24 0.9405899007
25 0.8153073642
26 0.7155495554
27 0.5684568836
28 0.4088321911
29 0.3557864408
30 0.2113010907
31 0.1694486681
32 0.0760223149

300/300
7.7140
K<(2)

.904377776%
. 7853796965
. 7442758805
.7058401277
.6688658371
.6298386927
-5845339025
.5313318617
.4701445959
.4011337395
.3244755495
.2403756422
1491218654
.0511755436
-9473453911
.8390939512
. 7287528296
6181491397
.5051613795
.3892535163
.2990759483%
.2119789043
.0780936974
.9324803764
.8091597645
. 7073568710
.5561249358
.3990141967
.34916%2463
.1980011300
. 1650858647
.0707665231

400/400

6.6490

K(3)
90457173073
. 7853793709
.7442743516
. 7058364780
.6688590395
.6298258400
.5845092028
5312872953
4700698176
4010157242
3242983946
.2401205957
. 1487677992
.0507004388
9467301469
.8383305329
. 72785204736
6171101886
.5039130969
. 3878473579
.2981689802
2102506705
0756160472
- 9296546344
.8070654825
. 7044198556
551783551 1
.3960291926
.3463888083%
.1940565838
.1628889835
.0690316941

2
2
2
2
2
2
2
2
2
2
2

2
2
2
1
1
1
1.
1
1
1
1
1
0
0

0
0]
0
0.
0
0
0

600/600
8.3590
K<(4)
.9047115148
. 7853791383
. 7442732597
7058338716
.6688541857
.6298166640
5844915671
5312554689
4700164073
4009314209
03241718322
2399383710
. 1485148121
.0503609612
9462905650
8377852169
7272088742
6163683147
.5030211632
. 3868455487
.2975250575
2090084277
.0738436305
9276407351
.8055866576
7023000120
5486751696
.3940483025
3442535040
.1915338313
1610428359
.0678093572

2
2
2
2
2
2
2
2
2
2

88

Exact

.9048240973
. 71853789522
- T442723862
. 7058317867
. 6688503038
6298093260
-5844774627
.5312300119
-4699736807
.4008639743
2.3240705683
2.2397925621
2.1483123730
2.0500893090
1.9459388267
1.8373489546
1.7266944894
1.6157749535
1.5023074328
1.3860457098
1.2970121212
1.2080100205
1.0724241279
0.
0
0
0
0
0
0
0
0

9260324630

.8044134784
. 7005910223
.5461842154
-3925541393
-3424531437
. 1897055209
- 1593885055
-0668369969
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Table 4.3b Errors in numerical eigenvalues e(p)=k2-k2(p)
for the Munk profile with an elastic bottom.

N1/N2  200/200 300/300 400/400 600/600

ET= 8.9040 7.7140 6.6490 8.3590
J e(1) e(2) e(3) e(4)
1 9.9E-~08 4.5E-08 2.5E-08 1.1E-08
2 -1.7B-10  -7.4E-11  -4.2E-11  -1.9E-11
3 ~7.9E-10 -3.5E-10 -2.0E-10 -8.7E~11
4 -1.9E-09 -8.3E-10 -4.7E-10 -2.1E-10
5 -3.5E~09 -1.6E-09 -8.7E-10 ~3.9E-10
6 -6.6E-09 -2.9E-09 ~-1.7E-09 -7.3E-10
7 -1.3E-08 -5.6E-09 ~3.2E~09 ~-1.4E-09
8 -2.3E-08 -1.0E-08 -5.7E~09 -2.5E-09
9 -3.8E-08 -1.7E-08 ~9.6E-09 -4.3E-09

10 -6.1E-08 -2.7E-08 -1.5E-08 ~6.7E-09

11 -9.1E-08 -4 .0E-08 ~2.3E-08 -1.0E-08

12 -1.3E-07 ~5.8E-08 -3.3E-08 -1.5E-08

13 -1.8E-07 -8.1E-08 -4.6E-08 -2.0E-08
14 -2.4E-07 -1.1E-07 -6.1E-08 -2.7E-08
15 ~3.2E-07  -1.4E-07 -7.9E-08 -3.5E-08
16 -3.9E-07 -1.7E-07 -9.8E-08  -4.4E-08
17 -4.6E-07 -2.1E-07 -1.2E-07 -5.1E-08

18 -5.3E-07 -2.4E-07  -1.,3E-07 ~5.9E-08
19 -6.4E-07  -2.9E-07 -1.6E-07  -7.1E-08
20  -~7.2E-07 -3.2E-07 -1.8E-07 -8.0E-08
21 -4.7E-07  -2.1E-07 -1.2E-07 -5.1E-08
22 -8.8E-07 -4.0E-07  -2.2E-07 -1.0E-07
23 ~-1.3E-06 -5.7E-07  -3%.2E-07 ~-1.4E-07
24 ~-1.5E-06 -6.4E-07 -3.6E-07 -1.6E-07
25 -1.1E-06 -4.7E-07  -2.7E-07 -1.2E-07

26 -1.5E-06 -6.8E-07  -3.8E-07 -1.7E-07
27 -2.2E-06 -9.9E-07  -5.6E-07 ~-2.5E-07
28 -1.6E-06 -6.5E-07  -3.5E-07 -1.5E-07

29 -1.3E-06 -6.7E-07  -3.9g-07 -1.8E-07
30  -2.2E-06 -8.3E-07  -4.4E-07 -1.8E-07
31 -1.0E-06 ~5.7E-07  -3.5E-07 ~-1.7E-07

32 ~-9.2E-07 -3.9E-07 -2.2E-07 -9.7E-08
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Table 4.4a Standard extrapolations K2(p,...
for the Munk profile with an ela

N1/N2 200/200
ET= 8.9040
J k(1)
1 2.9038346179
2 2.7853806272
3 2.7442802497
4 2.7058505588
5 2.668885274%
6 2.629875455%
T 2.5846045345
8 2.5314592539
9 2.470%582714
10 2.4014708645
11 2.3249814954
12 2.2411039069
13 2.1501327390
14  2.0525319298
15 1.9491021271
16 1.8412749628
17 1.7313287095
18 1.6211197497
19 1.5087252241
20 1.3932928320
21 1.3017067689
22 1.2168448262
23 1.0851477799
24 0.9405899007
25 0.8153073642
26  0.7155495554
27 0.5684568836
28 0.4088321911
29 0.3557864408
30 0.2113010907
31 0.1694486681
32 0.0760223149

MO POPONONDND DN NN

e ReNoNoNoNeo!

300/300

.7140

K<(1,2)
.9048123031
. 7853789520
. 7442723851
. 7058317827
6688502873
.6298092827
.5844773969
.5312299479
-4699736555
.4008640395
.3240707928
.2397930304
. 1483131665
.0500904346
+9459400023
.8373491419
. 7266921256
6157726518
.5023103038
3860220637
.2969712918
.2080861668
.0724504314
.9259927570
.8042416848
. 7008027234
-5462593775
.3911598012
.3438646907
.1873611615
.1615956221
.0665618896

400/400
6.6490
k2(1,2,3)

2.9048240319
2.7853789522
2.7442723862
2.7058317867
2.6688503038
2.6298093259
2.
2
2
2
2
2

5844774624

-5312300115
-4699736802
-4008639738
+3240705678
2397925617
2.1483123727
2.0500893082
1.9459388241
1.8373489463
1.7266944784
1.6157749752
1.5023074482
1.3860452322
1.2970134074
1.2080094850
1.0724238520
0.9260311309
0.
0
0
0
0
0]
0
0

8044165506

- 7005906830
.5461825685
3925351732
-3424740012
-1895263121
-1595540218
-0668809699

,q)

=10%xx%(p, .

stic bottom.

0
0]
0.
0
0
0]

2
2
2
2
2
2
2.
2
2
2
2
2

2
2
1
1
1
1
1
1
1.
1
1
0
0
0

600/600
8.3590

k2(1,2,3,4)

- 9048240971
- 7853789522
- 7442723862
.7058317867
6688503038
.6298093260
5844774627
.5312300119
-4699736807
.4008639743
- 3240705683
2397925621
.1483123730
-0500893090
-9459388267
8373489545
. 7266944895
6157749536
.5023074327
- 3860457078
2970121237
.2080100189
.0724241280
9260324557
.8044135149
. 7005909854
-5461842115
3925567401
3424505132
-1897132708
- 1593804660
.0668366602

!\)l\)f\)f\)f\)l\)f\)f\)l\)!\)l\)l\)

OOOOOOOOO—'—‘—*“—‘—‘—‘—‘—‘I\)I\J

90

ceyq)

Exact

.9048240973
- 71853789522
.7442723862
- 7058317867
. 6688503038
.6298093260
5844774627
.5312300119
-4699736807
.4008639743
3240705683
2397925621
- 1483123730
.0500893090
9459388267
8373489546
- 7266944894
-6157749535
.5023074328
. 3860457098
.2970121212
.2080100205
.0724241279
9260324630
.8044134784
.7005910223
.5461842154
-3925541393
«3424531437
- 1897055209
- 1593885055
.0668369969
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Table 4.4b Errors in standard extrapolations e(p,...,q)=k2—k2(p,...,q)
for the Munk profile with an elastic bottom.

N1/N2  200/200 300/300 400/400 600/600
ET= 8.9040 7.7140 6.6490 8.3590
J e(1) e(1,2) e(1,2,3) e(1,2,3,4)
1 9.9E-08 1.2E-09 6.5E-12 1.5E-14
2 -1.7E-10 2.0E-14  -6.4E-16 -7.3E-16
3 -7.9E-10 1.0E-13 2.8E-16 2.9E-16
4 -1.9E-09 3.9E-13 2.1E-16 -2.7E-16
5 -3.5E-09 1.6E-12 4.8E-15 -1.8E-16
6 -6.6E-09 4.3E-12 1.7E-14  -6.4E-16
7 -1.3E-08 6.6E-12 3.2E-14  -3,4E-16
8 ~2.3E-08 6.4E-12 4.2E-14  -8.8E-16
9 -3 .8E~-08 2.5E-12 4.9E-14 7.4E-16
10 -6.1E-08 -6.5E-12 4.9E-14 4.2E-16
11 -9.1E-08 -2.2E-11 4.5E-14 8.0E-17
12 -1.3E-07 -4.7E-11 3.9E-14 4.5E-16
13 -1.8E-07 -7.9E-11 3.8E-14 6.8E-16
14 -2.4E-07 -1.1E-10 7.5E-14 3.2E~16
15 ~3.2E-07  -1,2E-10 2.6E-13 1.8E-16
16 -3.9E-07  -~1.9E-11 8.2E-13 4.4E-16
17 -4 .6E-07 2.4E-10 1.1E-12  -4.7B-15
18 -5.3E-07 2.3E-10  -2.2E-12 -1.3E-14
19 -6.4E-07 -2.9E-10 -1.5E-12 1.9E-14
20  -7.2E-07 2.4E-09 4.8E-11 2.0E-13
21 -4 . 7E-07 4.1E-09  -1.3E-10 -2.5E-13
22 -8.8E-07 ~7.6E-09 5.4E-11 1.6E-13
23 -1.3E-06 -2.6E-09 2.8E-11 -1.1E-14
24  -1.5E-06 4.0E-09 1.3E-10 7.3E-13
25 -1.1E-06 1.7E-08  -3.1E-10  -3.7E-12
26 ~1.5E-06 -2.1E-08 3.4E-11 3.7E-12
27 -2 .2E-06 -7.5E-09 1.6E-10 3.9E-13
28 -1.6E-06 1.4E-07 1.9E-09  -2.6E-10
29 -1.3E-06 -1.4E-07 -2.1E-09 2.6E-10
30 ~2.2E-06 2.3E~-07 1.8E-08 -7.7E-10
31 -1.0E-06 -2.2E-07 -1.7E-08 8.0E-10
32 ~-9.2E-07 2.8E-08  -4.4E-09 3.4E-11



TABLES

Table 4.5 Comparison of eigenvalues for the Munk profile with:
an elastic bottom and a rigid bottom.

J Elastic Rigid

1 0.29048241E-03

2 0.27853790E-03 0.27853790E~03%
3 0.27442724E-03 0.27442742E-0%
4 0.27058318E-03 0.27059198E-03
5 0.26688503E-03% 0.26704188E-03
6 0.26298093E-0% 0.26397293E-03
7 0.25844775E-03 0.26073984E-03
8  0.25312300E-03% 0.25635956E-03
9 0.24699737E-03 0.25098018E-~03
10 0.24008640E-03 0.24474192E-03
11 0.23240706E-03 0.23768501E-03
12 0.22397926E-03 0.22982337E-03
13 0.21483124E~03 0.22116310E-03
14 0.20500893E-03 0.21170732E-03
15 0.19459388E-03 0.20145785E-03
16 0.18373490E-03 0.19041582E-03
17 0.17266945E-0% 0.17858200E-03
18  0.16157750E-03 0.16595691E-03
19 0.15023074E-03 0.15254093E-03
20  0.13860457E-03 0.13833434E-03
21 0.12970121E-03 0.12333734E-03
22  0.12080100E-03 0.10755009E-03
23 0.10724241E-03 0.90972717E-04
24  0.92603246E-04 0.73605315E-04
25 0.80441348E-04 0.55447959E-04
26 0.70059102E-04  0.36500712E-04
27  0.54618422E-04 0.16763621E-04
28  0.39255414E-04
29 0.34245314E-04
30  0.18970552E-04
31 0.15938851E~04
32  0.66836997E-05
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