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Abstract- Over the last 30 years, model-based approaches to 

array signal processing have evolved considerably to the point 
where initial skepticism has been replaced by casual acceptance. 
Still challenges remain. In this work we are progressing to a fully 
autonomous implementation in which all of the processing is 
done within the array. Target tracks are then passed to the surface 
using acoustic links. This requirement is a big challenge in that 
the algorithms must be fast to operate in real-time on modest 
embedded computers. They also must be robust enough to 
function without human invention. We describe here one 
approach and its performance in an experimental sea test with a 
prototype autonomous array. 

 
 

I. INTRODUCTION 
 
In recent years, new acoustic sensors have been 

developed that are lightweight and use extremely low 
power. At the same time, inexpensive high-performance 
and low-power computers have become available. As a 
result a new generation of acoustic arrays has become 
practical that are easily deployed and perform all 
processing autonomously. A key challenge is to develop 
signal-processing algorithms with the usual desirable (but 
conflicting) characteristics of high probability of detection 
and low probability of false alarm. Since conventional 
plane-wave beamforming provides no ability to distinguish 
surface and submerged targets, model-based approaches 
are the likely answer. The acoustic model, of course, 
predicts the multipath structure, which in turn provides a 
unique signature of the source position in range, depth, and 
(often) azimuth. 

 
A Venn diagram (Fig. 1) of alternatives for model-

based localization would include 1) matched-field 
processing [1-4], 2) time-reversal/back-propagation [5-8], 
and 3) correlation methods [9-11]. These approaches all go 
back to the 1970's and though they sound quite different do 
indeed have a region of overlap in which the final 
algorithm is identical. This is important to remember since 
being aware of this overlap eliminates superficial claims 
about the benefits in terms of speed or robustness of one 
approach over the other. On the other hand, the different 
approaches begin from quite different perspectives and 
often suggest new directions or extensions that either 
would not be natural from another starting point or would 
not even be possible. 

 

 

Fig. 1. Relationship between the various model-based processing 
schemes. 

Our focus here is on the use of correlation approaches. 
To examine their performance, we conducted an 
experiment using a prototype autonomous array called 
Hydra (Fig. 2). This is a 6-phone sparse horizontal line 
array designed for autonomous operation (although for 
research purposes we are currently processing the data off 
line). The data from the Hydra Sea Test was recorded as an 
acoustic source was towed across the array. 

 
Fig. 2. Configuration of the Hydra array. 

We process the data in two fashions. The first approach 
uses replica correlation in which a copy of the transmitted 
waveform is correlated with the received data. This case of 
a known source waveform is relevant for tracking AUV's 
or for the active scenario. The second approach uses auto- 
and cross-correlation of phone data and is relevant to the 
case of an unknown broadband source waveform. A pre-
whitening stage is needed for signals with a strongly 
colored spectrum and this is done with a SCOT (smoothed 
coherence transform). 

 

Matched-field 
processing 

Back-
propagation/ 

Time-reversal 

Correlation 
processing 



 2 

 
Fig. 3. Bathymetry in the vicinity of the Hydra arr ay. 

In either case, the received data shows a pattern of 
echoes (representing the channel impulse response or its 
auto/cross correlation). This pattern is a fingerprint of the 
source position so that the source is uniquely identified by 
comparison to an ensemble of predicted echo patterns that 
are generated by an acoustic model. This paper will both 
demonstrate the processing and discuss the pros and cons 
of several variants. 

 
 

II. EXPERIMENTAL SCENARIO 
 

The Hydra array was deployed on the seafloor in an 
area off the coast of California near San Diego on July 26, 
2000 as shown in Fig. 3. The water depth at the array was 
about 100 m, varying by some 15 m over the area of the 
source tows. 

Geo-acoustic data for the site are well known from 
previous studies in the area. The ocean sound speed profile 
was measured during the experiment and showed a 
downward refracting shape shown in Fig. 4. A sense of the 
propagation conditions is given by a TL plot and ray trace 
shown in Fig. 5 for a source depth of 30 m. 
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Fig. 4. Sound-speed profile measured during the Hydra Sea Test. 

 
Fig. 5. Ray-trace superimposed on transmission loss for the test site. 

 
III. ACOUSTIC TRANSMISSIONS 

 
Sources of interest for this array include both marine 

mammals and surface ships. To provide a waveform with 
characteristics representative of such sources, both tonals 
and LFM chirps were transmitted. The chirps swept from 
30-330 Hz over a 3-second interval and were repeated 
every 6 seconds. A plot of the spectrogram (Fig. 6) on one 
of the phones shows the typical ‘bathtub pattern’ as the 
source passed through the closest point of approach (CPA). 
The nearly vertical striations are the LFM chirps and the 
horizontal striations are the tonals. 

 
A. Replica Correlogram 
 
We next correlate the received waveform with a replica 

of the source waveform: 
 �

−= τττ dstrtrr )()()( .   (1) 

The resulting function, )(trr , is referred to as the replica-
correlogram or matched-filter output. This is a fairly 
standard procedure but we will review it briefly. 
 

 
Fig. 6. Spectrogram of one of the Hydra channels during an overpass 

by the tow ship. 
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Fig. 7. Measured (left) and modeled (right) channel impulse response as the source is towed over the array and back again

 
The received waveform is a sum of delayed and scaled 

versions of the source waveform: �
−= )()( ii ttsAtr .    (2) 

More generally, we also obtain additional terms involving 
the Hilbert transform of the waveform. The combination of 
the waveform and its Hilbert transform represents all 
possible phase changes. However, for simplicity we 
neglect these effects. 

 
Replica correlation then yields 
 ���

−=+−= )()()()( iiii ttssAdsttsAtrr τττ , (3) 

where, )(tss , is the auto-correlation function of the 
source: �

−= τττ dststss )()()( .   (4) 

 
Thus if we make )(tss a sharp function like the delta-

function we receive a pattern of impulses with peaks 
matching the strengths and delays of the echoes in the 
channel; in mathematical terms it approximates the 
Green’s function. The autocorrelation of an LFM chirp is a 
sinc function and thus produces the desired impulse. The 
resulting replica-correlogram is shown in Fig. 7 with the 
wavefronts lined up by a ‘leading edge’, defined based on 
a threshold relative to the peak energy level. (The precise 
definition is important for the graphics but irrelevant for 
the source tracking described later.)  

 
It is clear from the replica correlogram that the pattern 

of impulses received varies systematically with source 
position. However, to exploit this for localization, we 
either need to measure or model that dependence. Here we 
take the latter approach using the BELLHOP beam-tracing 
model to simulate the experimental scenario. The result 
shown in Fig. 8 shows a clear correspondence with the 
measured data, providing confidence in the simulation. 

 
III.  CORRELATION TRACKING WITH A KNOWN 

SOURCE SPECTRUM 
 
We invert for the source position by comparing the 

measured impulse-response, )(trr , to an ensemble of 

modeled versions, ),;( ss zrthh , seeking the source 

coordinate, ),( ss zr  that gives the best match between 
model and data. The comparison between model and data 
is done by a correlation: �

−= τττ dzrhhtrrzrC ss
t

ss ),;()(max),( . (5) 

 
This correlation ),,;( ss zrtC  also depends on time in 

that it is built up as each new snapshot is processed. The 
resulting 3D function contains a snaking curve whose 
trajectory traces out the source motion in time and space. 
Slicing that ambiguity function at the true source depth of 
30 m yields the range-time track shown on the left in Fig. 
8. Similarly a slice in depth reveals the depth-time track 
shown on the right in Fig. 8. Both results agree well with 
the independent measures (GPS) taken during the 
experiment. 

 
These results provide an effective demonstration of the 

algorithm; however, a further improvement can be 
obtained by processing all the phones in the array. This 
provides several benefits. First, the added information 
reduces ambiguities by introducing independent 
constraints. Second, it provides increased gain against 
noise. Third, it allows resolution in the azimuthal direction. 
The algorithm is a straightforward generalization in which 
additional auto-correlations are summed together to obtain 
the final ambiguity function. The effect is shown in Fig. 9 
with the Hydra phone positions indicated by the ‘+’ 
symbols. Note the left-right ambiguity, which is difficult to 
resolve with a nearly linear array. 
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Fig. 8. Range-time (left) and depth-time track derived by correlation processing on a single phone.

 

 

IV. CORRELATION-TRACKING IN THE CASE OF 
UNKNOWN SOURCE SPECTRUM 

 
The algorithm described above exploited knowledge of 

the source spectrum. It should be noted that there are 
important cases where this spectral information is 
available. However, when it is not the replica correlation is 
replaced by auto and cross-correlation. 

 
To explain this process in more detail, consider first the 

auto-correlation processor. If the transmitted waveform has 
spectrum, ),(ωS  and the channel transfer function is 

)(ωH  then the received spectrum is 

)()()( ωωω SHR = . Therefore, the auto-correlation of 

the received waveform is 
22

)()( ωω SH . This is just 

the power spectrum of the channel and source spectra. The 
first may be also be interpreted as the auto-correlation of 
the channel impulse response. Similarly the second is the 
auto-correlation of the source waveform. Acoustic models 
predict )(ωH for candidate source positions. Thus, if we 
can filter the received time series in such a way as to 
remove the effects of the source spectrum, we can localize 
the source by comparing an ensemble of predicted channel 
auto-correlations to the measured one. 

 
In many cases the source spectrum is white in the pass 

band of the array. In such cases the entire term associated 
with the source is unity and no further processing is 
required. However, when the source spectrum is colored or 
includes tonals the signal must be pre-whitened in some 
way. This is not as simple as it might first appear since the 
pre-whitening should eliminate ripples in the source 
spectrum while preserving ripples in the channel transfer 

function (since the latter are induced by the multipath 
structure and provide key information for source 
localization). 

 
One standard pre-whitening approach is called the 

smoothed coherence transform or SCOT. In fact this is 
nothing more than a pre-whitening based on an averaged 
power level. The averaging time should be taken long 
enough to average out ripples in the channel transfer 
function. The process is illustrated in Fig. 10. The left 
panel is just a blow-up of the spectrogram shown 
previously in Fig. 6 showing more clearly the narrowband 
tonals superimposed on a broadband background. As 
mentioned above, the narrowband tonals were part of the 
transmitted waveform and represented about 50% of the 
total source energy. Since the autocorrelation of a tonal is a 
sinusoidal function of lag, the tonal would overwhelm the 
results and prevent us from localizing the source. 

 

 
Fig. 9. Range/cross-range snapshot generated by correlation 

processing of multiple phones. 
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Fig. 10. Spectrogram for a single phone as the source passed over the 

Hydra array before (left) and after (right) pre-whi tening. 

 
To summarize the procedure for unknown source 

spectrum: we prewhiten and form both auto- and cross-
correlation time series for all possible phone combinations. 
As each channel receives multiple echoes of the source 
time series, we get a sequence of spikes as echoes in one 
channel line up in time with other echoes in the other 

channel. Just as in the replica correlation process, we then 
predict what this pattern should look like for an ensemble 
of hypothesized source positions. The ensemble of 
modeled patterns is then compared to the measured one 
and the ‘similarity’ (measured by correlation) is plotted as 
a function of hypothesized source position. 
 

To understand how this works, it is useful to examine 
the auto- and cross-correlation plots during a period where 
the source passed over the array.  The pair of plots in Fig. 
11 is derived using an autocorrelation of a single phone 
using modeled (left) and measured (right) time series. Note 
again the systematic variation of the peaks as the source 
passes over the array. As discussed above, these peaks 
occur when one echo in the received data lines up with 
another. Naturally, there is always a peak in the auto-
correlation function at zero lag. Figure 12 presents a 
similar comparison for cross-correlation of two different 
channels in the Hydra array.  Note the agreement between 
the measured and simulated correlograms. 

 

  
 

 
 
 

Fig. 11. Comparison of modeled (left) and measured (right) auto-correlations. 
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Fig. 12. Comparison of modeled (left) and measured (right) cross-correlations.

 

 
 
The final localization process can be done using every 

possible set of pair-wise correlations or using just subsets 
(even a single phone auto-correlation is sufficient for 
localization).  The sequence of subplots in Fig. 13 shows 
some of the various options including replica correlation, 
auto-correlation, cross-correlation, and auto- and cross-
correlation. 

 
It is interesting to note how the auto and cross correlation 

results complement each other. The auto-correlation (and the 
replica correlation) produces an intersection of circles, so the 
ambiguity surface shows sidelobes that are normal to the 
radial from the array to the source. The cross-correlation 
produces an intersection of hyperbolae, so the ambiguity 
surface shows sidelobes along the asymptotes of the 
hyperbolae that are parallel to the radial from the array to the 
source. Combining these two results produces a locus of 
points that is the intersection of two perpendicular lines. The 
result is a very compact main peak in the composite 
ambiguity surface. 

 
While these results provide some rough indication of the 

performance of the different options, it is worth noting that 

they do not provide a statistical measure. Similarly, the color 
scale used for plotting the results is essentially irrelevant and 
can be scaled arbitrarily. The important statistic is not the 
peak to sidelobe level on a single snapshot, but ‘time-held’, 
i.e. the percentage of time the peak is in the ‘correct’ position. 

 
V. SUMMARY 

 
Using the correlation-processing framework, we have 

demonstrated successful model-based localization using a 
prototype lightweight deployable array. Perhaps of greatest 
interest is the capability for depth discrimination, which is 
otherwise very difficult to automate. Future work will 
quantify the performance vis-à-vis matched-field processing 
and as a function of source level.  
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Fig. 13. Ambiguity surfaces generated via a) Replica correlation, b) Auto-correlation, c)  Cross-correlation, and d) Auto- and cross-correlation. 
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