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Abstract

The interesting acoustic modeling problems often push the prac-
tical limits of full-wave models. For instance, in acoustic tomography
one needs to be able to predict the propagation of an acoustic pulse for
successive realizations of 3D envifonments. For these types of prob-
lems ray methods continue to be attractive because of their speed.
Unfortunately, existing codes are prone to a number of implementa-
tion difficulties which often degrade their accuracy. As a result most
ray models are actually incapable of producing the ray theoretic re-
sult. We discuss a new method for implementing ray theory that uses
a finite-element algorithm. This method is free of numerical artifacts
affecting standard ray models and provides excellent agreement with
more computationally intensive full-wave models.

1 Introduction

Ray tracing is one of the oldest methods for modeling sound propagation in
the ocean. Newer so-called full-wave methods have supplanted ray tracing
in many areas, however, ray models are still widely used. Their principle
problem is a reputation for low-accuracy. Their principle strength is for
high-frequency problems— full-wave models are often intolerably slow for
such problems. Furthermore, the accuracy of ray models tends to improve
at higher-frequencies.
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Another key feature of ray models is their ability to handle broadband

problems efficiently. In full wave models each new frequency usually requires

a new model run. In contrast, for ray methods, many parts of the compu-
tation are independent of frequency, e.g., the ray paths and travel times.
Furthermore, ray theory is directly applicable to range-dependent problems.
Thus, a problem ideally suited to ray tracing might be a one with a high-
frequency, broadband source in a range-dependent environment. This is pre-
cisely the scenario for two areas where ray models dominate: active sonar
modeling and ocean acoustic tomography.
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Gaussian beam tracing has been proposed as a natural replacement for
ray tracing. In this approach beams are associated with the individual rays
in a ray fan. The field at any given point is constructed by adding up the :
contributions of each of the beams. (For a more complete description see

Refs. [1, 2].)

With properly chosen beam width and curvature, the Gaussian beam

method is typically much more accurate. Furthermore, there is no need to
locate eigenrays (rays that connect the source and receiver). Finding eigen-
rays is a nonlinear root-finding problem that tends to cause many problems
in ray models. The key obstacle to the widespread acceptance of Gaussian -

beam tracing has been the difficulty in choosing the beam parameters.

In our work with the Gaussian beam method we often had difficulty
obtaining quality ray solutions for comparison. (McGirr, et al.[3] reached |
a similar conclusion in their comparitive study of existing ray models for .
navy applications.) Most of the existing ray models introduce numerical .
artifacts that make the numerical results significantly worse than what we
might term the ray-theoretical results. Thus, there is an intrinsic accuracy |
limitation in ray theory due to the high-frequency asymptotics. Beyond this, :
implementation difficulties were further degrading the results. Two common |
problems were a failure to incorporate a phase change at a caustic and failure

to locate an eigenray.

In fairness, it should also be pointed out that these flaws in the ray.
models were often not critical because of the way the models were used (i.e.,
to produce illustrative ray paths). In addition, they were often used with'
simple reflection loss tables for the bottom loss. In the absence of detailed:
phase information about the bottom reflection coefficient, a caustic phase.

change is irrelevant for bottom reflected rays.

The ray tracing technique we describe here grew out of an attempt to de-
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velop an option in the Gaussian beam code that would allow us to produce
a ray theoretic result. We found that through a simple modification of the
beam algorithm this could be done in which ‘hat-shaped’ rather than Gaus-
sian beams are constructed. The resulting technique ends up being analogous
to the finite-element method and so we refer to the method as finite-element
ray (FER) tracing.

The FER model inherits many of the appealing aspects of the Gaussian
beam method. No eigenray tracing is required. This is particularly attractive
for 3D problems where finding eigenrays is very complicated. Caustic phase
changes are also easily included. Unlike Gaussian beam tracing the method
recovers precisely the ray theoretic result. This is both good and bad. It is
good in the sense that as pointed out earlier most ray models are actually
incapable of producing the ray theoretic result. It is bad in the sense that
standard ray theory is well-known to give singularities at caustics and foci.
However, in general we find the results are surprisingly good.

2 The Algorithm

The basic technique is illustrated in Fig. 1. A fan of rays is traced from the
source using the usual ray equations[4]:

dr d¢ 1 dc
s - =Tag
dz d¢ 1 de
ds - CC(S)’ C—lg_—ga’ (1)

where r(s), z(s) is the ray trajectory in cylindrical coordinates, (£(s),{(s)) is
a tangent to the ray and s is arclength along the ray. The initial conditions
specify the source location and the slope of the emitted ray:

c(0)’

r(0) = r.  £0)=

A0) = 5 (0= 2)

COS «x

where (75, z5) is the source coordinate and « is the ray take-off angle.
The intensity in ray codes is often calculated from the spreading of two
adjacent rays. In our approach we reverse these steps. We use a differential
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W(s)

Figure 1: Construction of a finite-element ray.

equation that gives us directly the intensity along each ray. We then use that
intensity to calculate a beam width so that the beam precisely filis the zone
out to the neighboring ray.

The differential equations giving the intensity along a ray are the dynamic
ray equations [5]:

2= apls),
j_z - —;(”;)q(s), (3)

where c,, is the derivative of the sound speed in a normal direction to the
ray path.

The dynamic ray equations characterize the change in ray position due
to general changes in the initial conditions for the ray. In our case we need
the change in the area of the ray tube due to a change in ray take-off angle.
The appropriate initial conditions for the dynamic ray equations are then:

4(0) =0, 2(0) = (1—0) @)
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Then the amplitude along a ray is given by:

1 |c(s)cosa 1z

A = T lr do)ats)

(5)

and the beam width W(s) is

q(s) bax
3

where éa is the difference in angles between adjacent rays. Given the beam
width we construct a hat-shaped function ¢(n):

W(s) =

) (6)

'J_)_—' orn
o ={ 7 B =W

0 else

(7)

where n(s) is the normal distance from the receiver to the central ray of the
beam. The pressure field due to each beam is then given by:

P(s,n) = A(s)$(n)e™ ™), (8)

Here w is the source frequency and 7(s) is the travel time along the ray:

(o) =r(0) + [ — (9)

c(s

We select a fan of rays covering a domain of angles with a specified angular
increment. For each take-off angle o we solve the ray equations (1) numer-
ically to obtain the ray path. Simultaneously we integrate the dynamic ray
equations to calculate the beam width W (s) and amplitude A(s). Thus we
have constructed a beam about each central ray as defined by Eq. (8).

The field at any particular receiver point is obtained by summing up the
contribution of each beam at that point. Thus the method is structurally
almost identical to Gaussian beam tracing. However, the use of hat-shaped
beams yields a ray-theoretical result. As such singularities will occur at
caustics. These occur at points where ¢(s) vanishes. We do not attempt to
smooth out these singularities, however, we detect them by simply testing
for a sign change in q(s) and increment the phase by = /g,
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Figure 2: Sound speed plot for the Munk profile
3 Example

This scenario involves deep water and a canonical sound speed profile (the
Munk profile[6]) that is often used as a test problem. The sound speed for
this profile is given by:

e(z) = 1500.0[1.0 + &(z' — 1 + ¢™)], (10)
Whére
e = 0.00737, (11)
and the scaled depth z/ is given by
2(z — 1300)
="k (12)

This sound-speed profile is plotted in Fig. 2. The corresponding ray trace
for a source at 1000 m depth is shown in Fig. 3. To simplify the discussion
we have restricted the ray fan to include only the waterborne ray paths.
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Figure 3: Ray trace for the Munk profile

The resulting transmission loss field is shown in Fig. 4 for a source fre-
quency of 50 Hz. The upper plot is obtained using the FER model (BELL-
HOP). The lower plot is the reference solution obtained using a fast-field
program (FFP)[7]. (The particular FFP used is SCOOTER which is de-
scribed in Ref. [8].)

Most people would consider this an extremely low frequency problem for
a ray model. Yet the agreement with the FFP results is excellent. Even fine
details of the interference pattern are reproduced. The well-known flaws of
the ray theoretic result are also visible. That is, we can see how the caustics
of the ray trace emerge in the pressure field. However, these flaws are quite
minor.

It is useful to look at a single slice to obtain a more quantitative measure
of the agreement. In Fig. 5 we show a slice for a receiver depth of 800 m.
The solid line is the reference solution obtain from the SCOOTER FFP and
the dashed line is the FER result. Again we see excellent agreement apart
from a few isolated zones where we pass near caustics of the ray field.
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Figure 4: Transmission loss for the Munk profile using the FER method
(upper) and an FFP program (lower).
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Figure 5: Transmission loss for the Munk profile for a receiver depth of 800
m using the FER method (dashed) and an FFP (solid).

4 Summary

We have applied the finite-element ray approach to a number of different
scenarios varying from deep to shallow water and from Arctic to equatorial
waters. The results presented here are in a sense representative. We ex-
perience no numerical difficulties with different cases, however the accuracy
varies significantly depending on the density of caustics and the frequency.
The accuracy varies in a systematic fashion with frequency in that the errors
are confined to the vicinity of the caustics where the ‘vicinity’ is defined in
terms of wavelengths.

The examples presented here are all range-independent, however, the code
has been developed for the general range-dependent case. This is significant
since many of the implementation difficulties are not present if a ray model
is designed a priori to take advantage of range-independence.

In short, the FER approach provides a simple and eflicient means of
reconstructing the ray-theoretical result. Since it is implemented without
caustic corrections it does retain the flaws inherent in the basic ray theory.
On the other hand, most people working with rav models are accustomed
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to seeing ray theory together with implementation artifacts. With these
removed we find that ray theory is surprisingly accurate.
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