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Modeling Techniques for Marine-Mammal
Risk Assessment

Martin Siderius and Michael B. Porter

Abstract—Propagation modeling in the ocean may be said to be
a fairly mature subject, with a number of reliable and efficient
acoustic models freely distributed. However, acoustic modeling to
predict effects of sound on marine mammals presents some par-
ticular challenges. Standard sonar models predict the mean power
levels for static receivers. However, marine-mammal researchers
have shown a strong interest in being able to predict the actual time
series that a moving mammal would experience as it swims through
an ensonified ocean. The time series can then be used to directly
model auditory models of the mammalian ear. To do this properly
requires attention to subtle Doppler effects. The authors present a
Gaussian-beam-tracing method that handles all these issues. An-
other key element needed for such models is the ability to rapidly
predict three-dimensional (3-D) acoustic fields for lots of source/re-
ceiver combinations. This problem arises in trying to choose op-
timal locations for navy exercises, considering also a variety of hy-
pothesized mammal-migration patterns. The authors discuss a pre-
computation approach to solve this problem. Finally, they examine
a technique to reduce the computation needed for the one-third
octave transmission loss (TL) averages. The one-third octave av-
erage is often used as a metric for the assessment of risk to mam-
mals. The brute-force solution to this problem requires propaga-
tion modeling at many frequencies in the band. Here, the authors
develop a general relationship to replace those frequency averages
with much more easily computed range averages. The novelty of
this approach relative to the previous range-averaging techniques
is that it extends those methods to the range-dependent conditions.

Index Terms—Acoustics, marine mammals, sonar.

I. INTRODUCTION

I N RECENT years, evidence has accumulated indicating
that human-made sound has an adverse effect on the marine

environment. This has been highlighted by particular whale
stranding events that have coincided with sonar activity [1].
Although sonar systems may be the most obvious form of
human-made or anthropogenic underwater sound, many other
sound sources exist such as shipping noise and oil exploration
and drilling activities. One of the key elements to under-
standing the effect of sound on the marine environment is
proper physics-based modeling of the sources of sound and the
propagation through the ocean.

The U.S. Office of Naval Research has been addressing these
issues through a program on Effects of Sound on the Marine
Environment (ESME). The overall effort included a specialist
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on every aspect of the problem from marine-mammal popula-
tion estimates and dive patterns to the anatomy and auditory
modeling of marine mammals. In the course of those discus-
sions, a wide variety of modeling needs arose, which led us to
develop special modeling techniques for different applications.
This paper discusses these developments.

Initially, a sort of golden solution was requested in which
a marine-mammal researcher would be provided with what is
sometimes called a stimulator. This is a modeling system that
provides a direct prediction of the time series that a marine
mammal would receive as it moved through the acoustic field,
possibly taking into account the source motion (sonar on a navy
ship for instance). Of course, the acoustic model should also
take into account full three-dimensional effects that arise when
an animal enters a complex region such as a fjord. Similarly, re-
cently recognized focusing effects due to solitons [2] would also
need to be included. Such a model might be run in a Monte Carlo
fashion considering different marine-mammal dive patterns or
migratory paths along with different surface ship courses. Obvi-
ously, this sort of modeling rapidly gets out of hand. A first siz-
able step toward this capability is to develop a Gaussian-beam-
tracing algorithm for a moving mammal. A simple technique for
doing this, which fully treats all the Doppler effects, is presented
in Section II.

While Gaussian-beam methods provide a substantial im-
provement over ray methods, they often are not sufficiently
accurate at low frequencies [3]. There is no universal answer as
to how low a frequency is acceptable for such methods, partly
because the required accuracy is in the eye of the beholder.
Nevertheless, as a rough indicator, we avoid the beam-tracing
approach when the water depth is less than 20 wavelengths.
When small-scale ocean features such as surface ducts are
important, the beam-tracing approach may break down at even
higher frequencies.

The alternatives to Gaussian-beam tracing involve consid-
erably more computationally intensive methods. Our approach
to these lower frequency cases was to develop a normal-mode
model for three-dimensional (3-D) environments. The approach
is based on standard techniques (see [4] and references therein).
However, we introduce a precalculation technique that produces
a sizable reduction in the computational load. In essence, we
precalculate coupling coefficients for a wedge-shaped ocean.
Then, the coupling coefficient for any lat/long in the real ocean
environment is obtained by identifying the corresponding depth
in the wedge ocean and extracting its precalculated coupling
coefficient. This approach generalizes the previous work [5]
that used the adiabatic approximation (no mode coupling). The
technical details of this process are described in Section III.

0364-9059/$20.00 © 2006 IEEE



50 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 31, NO. 1, JANUARY 2006

Fig. 1. Geometry for a 100-m water depth showing the source, receiver pair, and three arrivals (direct, surface reflected, and bottom reflected). The source is at
50-m depth and the receiver is at 25 m, their separation is 2 km.

The practical import is that full-wave calculations in 3-D envi-
ronments can be done almost instantaneously, providing maps
showing the zone of influence for the sonar or other source.

The coupled-mode approach provides an excellent comple-
ment to the beam-tracing method with a choice between the two
approaches determined by frequency. As the frequency goes up,
the coupled-mode option becomes computationally expensive;
however, this typically occurs at a point where one feels com-
fortable with the accuracy of a beam-tracing approach. Finally,
as an independent check, a parabolic equation model (RAM) [6]
was also integrated in the modeling package.

Any model for tonal waveforms can also be used to calculate
the time series using Fourier synthesis, i.e., running the model
for a sequence of tones and summing the resulting pressure
fields with a weighting defined by the source spectrum. The
number of frequencies required in this process is roughly
speaking determined by the time-bandwidth product of the
band-limited channel impulse response (since that determines
the number of Fourier coefficients necessary to describe that
same function). Since the models are run for a sequence of
tones, the run time is obviously higher than for a single tone. The
Nyquist theorem tells us that we cannot get around this problem
by interpolating the pressure from a coarser set of frequencies.
However, oftentimes, the pressure itself can be represented as a
sum of components that can be interpolated across frequency.
The most obvious example is the ray/beam-tracing solution,
which represents the field as a sum of echoes, each with an am-
plitude and delay. These quantities vary slowly with frequency
(if at all) making the Gaussian-beam methods very attractive
for broadband waveforms. Similarly, the normal-mode sum is
based on components that can be interpolated across frequency.

In any case, even with frequency interpolation, broadband
modeling is generally more computationally demanding.
Meanwhile, the full time series is probably not needed in many
cases to assess the impact. Instead, some coarser measure of
overall noise level in a band may be a suitable metric. One
measure often used is the noise in the third-octave bands [7]. In
Section IV, we discuss a method for calculating energy in the
third-octave bands that can be done using a single narrowband
calculation.

II. RAY-BASED METHOD FOR GENERATING TIME-SERIES DATA

WITH A MOVING RECEIVER

As discussed above, a “stimulator” was desired that could
provide a precise model of the waveform that a moving marine
mammal would hear as it moved through the ocean waveguide.
Some researchers were also concerned that Doppler effects be
properly included. Doppler effects have been treated in some
propagation models [8]–[11]. However, these approaches do not
address a broadband moving receiver in a fully range-dependent
environment.

To describe the process, we begin by noting that the complex
pressure field can be represented as a sum of arrival
amplitudes and delays according to

(1)

where is the spectrum of the source.
The convolution theorem tells us that a product of two spectra

is a convolution in the time domain. This leads to the corre-
sponding time-domain representation for the received waveform

, which is often written

(2)

where is the source waveform. This representation is very
intuitive, showing the sound that is heard as a sum of echoes
with various amplitudes and delays.

As a concrete example, we consider the geometry shown in
Fig. 1 with source at midwater depth and receiver closer to the
surface. The arrival pattern is shown in Fig. 2. The top panel
shows the arrival amplitudes and the lower panel shows
the phase. Arrival number 14 is for the direct path between the
source and the receiver and has the largest amplitude and 0
phase. Arrival 13 is from the path with a single-surface bounce
and has a slightly lower amplitude than the direct (longer path)
and 180 phase. As can be seen in the lower panel of Fig. 2, there
are many arrivals with phase between . This reminds us
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Fig. 2. Arrival amplitudes (top panel) and phase (lower panel). Note that the arrival numbers are assigned based on the launch angle starting from the surface,
which leads to an arrival number for the direct path that is near the middle.

that the amplitudes are really complex numbers and, there-
fore, (2) nonsensically delivers a complex time series from a real
source waveform.

A more careful application of the convolution theorem con-
siders the complex amplitudes and the conjugate symmetry of

that is necessary to guarantee a real received waveform.
The proper result is then

(3)

where is the Hilbert transform of . The Hilbert
transform is a 90 phase shift of and accounts for the imagi-
nary part of . We can interpret (3) as saying that any arbitrary
phase change can be understood as a weighted sum of the orig-
inal waveform and its 90 phase-shifted version. The weighting
controls the effective phase shift. As we have seen, the bottom
reflection can yield arbitrary phase shifts. However, the paths
that refract within the water column can be distorted in a sim-
ilar way as the waves pass through caustics.

A. Generating Time-Series Data With Motion

The approach described in the previous section is easily mod-
ified to predict a time series for a moving receiver. One way to
think about the moving-receiver problem is to imagine the sta-
tionary receivers positioned at every possible location within the
environment and generating a steady-state (static) time series
on each receiver. As our moving receiver proceeds through the
environment, it samples, at each time step, the corresponding
response from the stationary receiver’s time series. In practice,
we do not need to compute the entire time series for each sta-
tionary receiver but only need it for the time step that the moving
receiver samples. Using (3), we use the amplitudes and delays
that correspond to those at the stationary receivers at each time

step. This is equivalent to the moving receiver having ampli-
tudes and delays that change with time. For each time step, the
time-dependent arrival amplitudes and delays are used in the
convolution.

(4)
As an example, consider again the environment shown in Fig. 1.
But for simplicity, assume that the source and the receiver are
both at midwater depth and the receiver is moving in a range
away from the source (constant depth). The position of the re-
ceiver is denoted as , where is the velocity. Considering
the arrivals separately, the amplitude and delay of the direct ar-
rival, as a function of range from the source, are
and with as the sound speed. The received time series
from a source as a function of position is

(5)

and substituting

(6)

For a sinusoidal source function, , the received
time series is

(7)

which shows the familiar Doppler frequency shift of
. Similarly, for the surface path arriving

at angle , and and the received
time series is

(8)
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Fig. 3. Four points of the computational grid for a beam trace. The actual arrivals are computed at the four corners and any point in the interior computed through
interpolation of the amplitudes and extrapolation of the delays. A sample arrival is shown traveling at angle �.

with the Doppler-shift term and amplitude modified by the di-
rection of the arrival. The final received time series is the sum
over all arrivals.

For practical application, the arrivals’ amplitudes and delays
must be known at every time step and, therefore, at many po-
sitions as the receiver moves within the propagation environ-
ment. The receiver position at each time step is defined by the
marine-mammal movement (or some other function for other
applications), and obtaining the corresponding amplitudes and
delays is the topic of the next section.

B. Ray-Arrival Interpolation and Extrapolation

Ocean acoustic models are often designed to provide an
acoustic field on a regular grid. This is obviously a natural
situation for displaying the acoustic field throughout the ocean
waveguide. As we consider a mammal moving through the
ocean, we are then forced to address the problem of interpo-
lating the field onto the arbitrary track of the animal as it swims
through the computational grid.

To fix ideas, consider four neighboring grid points, as shown
in Fig. 3. To calculate the field at an interior point of the grid
points, we need to identify the same arrival on the four cor-
ners and interpolate its amplitude and phase. This sounds simple
enough but can be problematic since the arrivals on one grid
point may not correspond to those at another. That is, the re-
flections and refraction effects can cause a different number of
beams and different beam types on each of the grid points. For
example, consider a direct arrival on one corner of the grid that
is refracted away from another grid point. In this case, inter-
polating between these grid points for that arrival number may
involve interpolation of a direct path with a bottom bounce path,
and this will produce incorrect results.

To finesse this problem, we borrow an idea from finite-ele-
ment methods and construct shape functions centered on each
corner. The influence of these shape functions can be computed

independently but their sum provides the equivalent of a bilinear
interpolation. The shape functions for each corner are defined by

(9)

where represents the arrival amplitudes at each corner and
the weights are

(10)

Thus, represents a proportional distance in the direction,
and represents a proportional distance in the direction.

The four amplitudes are maintained as separate quantities,
and their corresponding delays are adjusted by the ray-path
travel time differences between the corners of the computa-
tional grid and . The geometry is shown in Fig. 3, with
the arrival indicated as a dashed line traveling at angle at the
lower left grid point. The delay time for that arrival is adjusted
from position to position by the distance divided
by sound speed

(11)

where, for example, is positive (increased delay)
for position 1.

To summarize, the received field is constructed using (4) with
an additional sum over each of the four corners (weighted am-
plitudes).

This technique produces a surprisingly good result even for a
grid spacing of several hundred wavelengths. To illustrate, con-
sider the same waveguide shown in Fig. 1 with a computational
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Fig. 4. TL computed at 950-m range as a function of depth. The solid line is
the true field with the calculation done with grid points at depths 1.5 to 99.5
in 0.5-m increments. The dashed line is computed in between grid points using
interpolation from arrivals computed at 900 and 1000 m in range and every meter
in depth (on the meter).

grid of 1 m in depth and 100 m in range. We use a 3500 Hz con-
tinuous wave signal for the source and place receivers at 950 m
(between range grid points) and at 1.5, 3.5, 5.5, , 99.5 m (also
between grid points). The results are shown in Fig. 4 where the
“true” field (solid line) is computed using a very fine sampling.
The result using this interpolation technique (dashed line) is in
excellent agreement.

C. Frequency Dependence

In the above discussion, we have implicitly assumed that the
boundary reflection coefficients are independent of frequency.
As an illustration of the frequency dependence (or lack of) on
beam/ray arrivals, we consider an iso-sound-speed ocean (1500
m/s) environment with 100-m water depth with geometry shown
in Fig. 1. The seabed is a very fine-sand bottom (1585 m/s)
(seabed sound speed, density, and attenuation for this bottom
type are taken from [12]). In the top panels of Fig. 5, the bottom-
reflection loss is shown for 500 and 5000 Hz along with the cor-
responding arrival amplitudes and delays. Note that the results
for the two frequencies are identical, confirming the frequency
independence of the reflection coefficient for a homogeneous
halfspace.

The same quantities are plotted in the lower panels of Fig. 5,
for a case where the seabed has a sound speed gradient of 10

in a 20-m layer. Fig. 5 shows only slight differences in both
reflection loss and arrival amplitudes that occur between 500
and 5000 Hz. Even in this case, many of the arrivals have exactly
the same amplitude and delay since some do not interact with
the seabed. Others show slight differences that depend on the
number of bottom interactions.

Obviously, more complicated layered bottoms can degrade
the assumption of frequency independence. However, our expe-
rience is that this approximation is reasonable for a large variety

of cases. It is worth noting in this context that detailed and ac-
curate models of the subbottom structure are, in any case, gen-
erally not available to drive a more accurate prediction.

D. Applications of the Time-Series Simulator

As a demonstration of the method, we consider a tonal
3500-Hz source at 50-m depth and sampled at a rate of 15 000
Hz. The environment is as considered previously in Fig. 1
with the sand bottom (no gradient). We consider an idealized
mammal making a perfectly horizontal transit at a depth of
25 m moving from 900 to 1000 m in range over 5 s.

The received time series in the top panel of Fig. 6 shows sig-
nificant variations in the intensity as the animal moves through
zones of constructive and destructive interference. This entire
time series was computed in between two-range grid points sep-
arated by 100 m (or 233 wavelengths).

It is interesting to compare this variation to the steady-state
field (middle panel of Fig. 6) that would be observed for a tonal
plotted as a function of range. This is just a range slice of the
standard transmission loss (TL) calculation for a narrowband
source. The similarity of these plots indicates that the overall
intensity variations can be obtained from a far simpler TL cal-
culation. Given the agreement of these two curves (lower panel),
one may conclude that the basic intensity variations can be ade-
quately modeled from the narrowband TL plot. However, if one
is interested in the finer details, such as Doppler shift, then the
broadband time-series approach is effective. In Fig. 7, the spec-
trum of the received time series (i.e., the top panel of Fig. 6) is
shown. Note how the spectrum has a clear shift of about 47 Hz
for the main arrivals with some spread for the different paths.

As a second example, we consider a typical deep-water
problem. The TL plot in Fig. 8 shows several common
deep-water features. Wind forms a mixed layer in the upper
100 m. The combination of constant temperature with the
natural increase in sound with pressure causes a slightly up-
ward refracting layer. The result is a so-called surface duct
that effectively traps energy. Surface-duct effects such as this
have been implicated in the Bahamas stranding. Separately,
we see a deep-cycling band of energy, which reemerges in the
so-called “convergence zones” every 50–60 km in range. This
deep-cycling energy corresponds to ray paths that are steep
enough to escape the surface duct but are eventually turned
back to the surface by the high pressure (and resulting high
sound speed) at the ocean bottom.

We consider (see the expanded view in the middle panel) a
hypothetical animal traveling in the mixed layer. The superim-
posed red line shows our dive scenario. It hears a sonar ping and
dives below the mixed layer to escape the sound. As it gets below
the mixed layer at 100 m, it is briefly successful in finding a quiet
zone. However, as it continues deeper, it eventually enters the
band of convergence-zone energy. Finally, as it continues still
deeper, it again enters a quieter zone.

Our time-series simulator is capable of predicting the re-
ceived waveform for the entire dive event, as shown in the lower
panel of Fig. 8. The sonar transmission starts at time zero, but
because of the animal’s range from the source, the first arrival
comes in about 30 s later. Note the quiet periods are from 12 to
13 min and from 16 min on.
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Fig. 5. Left panels show the bottom-reflection loss curves for 500 (solid) and 5000 Hz (dashed). Right panels show the arrival amplitudes and delays for 500 Hz
(x) and 5000 Hz (o). The top pair of plots is for a homogeneous seabed while the bottom pair is for a sand layer with a significant gradient in sound speed. Note
that the amplitudes and delays are insensitive to frequency with only slight differences for later arrivals with multiple bottom interactions in the case of the gradient
bottom.

Fig. 6. Time-series simulation for a receiver moving horizontally at 20 m/s
is shown in the top panel. The steady-state narrowband pressure amplitude
magnitude is shown in the middle panel (as a function of range), and the lower
panel compares the two (using the envelope of the received-pressure time
series). The zeros at the start of the time series is due to the 0.6-s travel time.

III. RAPID COUPLED NORMAL MODES

Range-dependent environments can be modeled as a series of
range independent segments as indicated in Fig. 9. We begin by
reviewing briefly the standard formulation. The wave equation
is separated into a product of range and depth solutions with
the depth equation satisfied by local normal modes in that

Fig. 7. Spectrum of the received waveform showing the Doppler shift and
spread due to receiver motion.

segment, and the pressure field can be written as a sum over
the local modes with excitation coefficients (details of this
formulation can be found in [4], [13])

(12)

In this case, we only consider forward propagation (the
one-way wave equation) and therefore only have one set of
excitation coefficients in each range segment. In the first range
segment containing the sound source, the excitation coefficients
are proportional to the local mode function evaluated at the
source depth , or in vector notation . The
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pressure-field couples from one segment to the adjacent
segment , according to a projection of mode sets between
segments

(13)

Each is an entry of the coupling matrix . The phase of
the mode coefficients is advanced within each range-indepen-
dent segment to the border of the next segment by multiplying
by the diagonal matrix .
The excitation coefficients at the receiver is constructed through
a cascade of coupling matrices from the first segment to the th
segment

(14)

and the pressure field in that segment is determined using (12).

A. Precomputation of Coupling Matrices: Equivalent Wedge
Ocean

The idea of rapid coupled modes is to precompute the local
mode functions at all water depths between the minimum and
maximum over the geographical area of interest. In this way,
much of the work is already done and, for any particular source-
receiver geometry, the pressure field is constructed by cascading
the coupling matrices according to the bathymetry in between.
The key observation is that a complicated bathymetry can be
mapped to an equivalent “wedge ocean.” This is shown diagram-
matically in Fig. 10. The coupling matrices for each slice of the
wedge ocean are precomputed. Then, to get the coupling matrix
for any particular slice in the real ocean, we just extract the cor-
responding slice (with the same depth) from the wedge ocean.
Note that in practice, we are talking about two coupling matrices
for any step corresponding to upslope or downslope propaga-
tion.

The coupling matrices are of dimension (for
modes) and, because the typical sampling of the mode functions
is several points per wavelength, the projection matrices are of
size , which produces a matrix usually larger (and in
many cases much larger) than the coupling matrices. The mode
functions themselves need only be stored at the depths for po-
tential receivers (e.g., if the receivers only cover the top 100 m
of the water column, the modes only need to be stored there).

In practice, the bathymetry usually causes the most important
range dependence. The ocean and bottom sound-speed variabili-
ties are two other obvious causes of range dependence; however,
these inputs are often not readily available or accurate. When
they are available, the wedge-ocean concept can be extended by
calculating the coupling coefficients for the ensemble of pos-
sible depth and volume scenarios.

B. Virtual at Sea Testing (VAST)

As an example, we apply the technique to a larger area off the
Virginia Capes used for VAST. The water depth (bathymetry) is
shown in Fig. 11, and the sediment sound speed is shown in
Fig. 12 (this type of environmental information has been com-
bined with acoustic tools in the ESME workbench software, and
details can be found in [14]). We consider 40-km radials from

Fig. 8. Simulation for an animal diving in a deep-water environment. Top
panel: TL showing surface-ducted energy and deep refracting convergence-zone
paths. Middle panel: Dive path superimposed on an expanded view of the TL
plot (the animal is moving near the surface for the first few kilometers and dives
at about a range of 57.5 km from the source). Bottom panel: Received time
series due to a 3500-Hz tonal showing quiet zones where the animal moves into
acoustic shadows.

the point 36 N and 75 W. The equivalent wedge ocean for
this case covers depths from 300–0 m. The central frequency of
interest is 500 Hz. We first compute the TL, and this is shown
along with the bathymetry in Fig. 13. In this example, the source
is at 30-m depth and the slice shown is at 18 m. Near the top of
the figure, some shadowing can be seen as the shallow water
begins to influence the TL. Near the bottom of the figure, the
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Fig. 9. Range-dependent environment is constructed as a series of
range-independent segments.

Fig. 10. Range-dependent problems for a complicated bathymetry are solved
using a precomputation of all the mode functions and coupling matrices for
the simple downslope and upslope problem that contains all the possible water
depths. The coupling matrices and mode functions are then cascaded in the
order corresponding to any desired bathymetry. This process is indicated by the
colored boxes precomputed in the upper panel and reused for the lower panel.

Fig. 11. Bathymetry for the Virginia Capes area (depths in meters).

shelf break begins and the water depth begins to increase and
the sound tends to hug the bottom resulting in higher losses at
the receiver depth.

One can imagine using the TL to create a mitigation map that
translates slices like those in Fig. 13 into safe ranges to operate
a sonar system. For instance, consider a source level of 230 dB

Fig. 12. Sediment sound speed (m/s) for the Virginia Capes area.

Fig. 13. TL from a source (in the middle) at 30-m depth and receiver at all
bearings and 18-m depth. The color scale is in decibels re 1 �Pa and ranges
from 50 to 100 dB. Note the bathymetry effects on TL in the upper left and
lower right portions of the slice. The gray area below shows the bathymetry.

re 1 and compute the sound-intensity level as a function
of range and bearing from the source position. Ranges of sonar
influence can be determined and, here, we consider three zones
(chosen arbitrarily): Greater than 165 dB, between 140–165 dB,
and less than 140 dB. This is shown in Fig. 14 for the same
source location as the TL plot of Fig. 13.

Another example for the VAST area is computing the zone
(or range) of influence as a function of sonar position. In this
example, the sonar is actually an explosive source and the hy-
pothetical source positions are anywhere in the region defined
in Figs. 11 and 12. In this case, peak pressure and third-octave
(averaged TL) sound levels are the metrics. Fig. 15 shows the
ranges of influence for a given explosion size and third-octave
threshold. The effect of bathymetry is apparent from the figure
as the shallow water acts as a waveguide, and the sound can
propagate to longer ranges at a higher intensity. There is also an
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Fig. 14. Maximum sound level over the top 30 m is used to estimate a risk map
for this portion of the water column relative to the range and bearing from a sonar
system with a source level of 230 dB. The red, yellow, and green are threshold
levels (arbitrarily chosen here) to quickly determine range of influence. Note
that most of the variation in azimuth is caused by the changes in bathymetry.

Fig. 15. Predicted zone of influence for hypothetical sound sources at various
locations in the Virginia Capes area. In this case, the range of influence depends
on both bathymetry and bottom properties as the more reflective seabeds allow
lower loss propagation to longer ranges.

impact on propagation due to the seabed properties as the more
reflective seabed types support the lower loss propagation.

The third-octave average is commonly used for determining
the impact of sonar on the environment, and some useful re-
lationships for computing these averages are given in the next
section.

IV. FREQUENCY-AVERAGED TL

TL plots at a single frequency inevitably show complicated
interference patterns due to constructive and destructive inter-
ference of arrivals. While such complicated variation is repre-
sentative of the propagation physics, the precise positions of
nulls and peaks are generally difficult to predict. Further, in na-
ture, the imperfect environment (e.g., rough surfaces and sound-
speed variations) does not support the large interference effects
seen in the models. More often, a general indicator of the overall
sound level is needed and a standard metric used in the sonar

community is the third-octave average. This is precisely defined
as

(15)

Here, is a user-selected center frequency. Upper and lower
frequency components are related to the center frequency by

. For a one-third octave average, the upper fre-
quency is related to the lowest by . The center
frequency can be chosen arbitrarily, but there exist some con-
ventional center frequencies for both one-third and full octave
bands.

While a third-octave average is convenient from a measure-
ment point of view, it presents some difficulties in the modeling.
In principle, the equivalent modeling process would require an
expensive broadband calculation for subsequent frequency av-
eraging. As a result, various authors (see [15] and references
therein) have developed range-averaging techniques as substi-
tutes. Range averaging can be done on a single TL calcula-
tion; however, the trick is to find formulas relating the two av-
erages. We will show how to generalize a technique, developed
by Harrison and Harrison [15], to handle range-dependent envi-
ronments. We also modify their formulation to handle arbitrary
windowing (e.g., the more commonly used boxcar average), as
opposed to the Gaussian-weighted average.

A. Range-Independent Frequency-Range Equivalence

We begin first with the range-independent case. The results
are similar to those in Harrison and Harrison; however, the
derivation is different, providing a more natural lead in to the
range-dependent case and allowing for choices in the way the
frequency average is taken.

The frequency-domain range-independent normal-mode ex-
pression for the pressure field as a function of range and depth

is [4]

(16)

where are the normal mode functions, is the density, and
the horizontal wave number. In the case of an isovelocity

medium, the normal modes are ,
and the wave numbers are approximated by

(17)

The magnitude-squared pressure field at range and center
frequency is

(18)

where is the speed of sound. The main change in the pressure
field due to the changing frequency is from the terms in the ex-
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Fig. 16. Equivalence of frequency and range averaging for a
range-independent environment with iso-speed water column. The source is
at 50 m and the receiver at 20 m. The light gray line is the single-frequency
(200 Hz) calculation, the black line is the frequency average (correct one-third
octave average), and the red line is the equivalent range average. (Color version
available online at http://ieeexplore.ieee.org.)

ponent of (18). A change in frequency to will alter the pressure
field, but this can be offset by using an appropriately modified
range value . To keep , the fol-
lowing must be satisfied

(19)

or

(20)

Therefore, the pressure field at any frequency in the band
can be computed from the center frequency using a range
substitution.

An example of this equivalent range averaging can be shown
for the geometry given in Fig. 1. In this example, the source
is at 50-m depth and the 23rd band number is used, which has

, , and . In the upper
panel in Fig. 16, we show three different curves. The light-gray
line is the TL calculated at the center frequency (single, 200-Hz
frequency) and shows the rapid variation due to constructive and
destructive interference. The solid black curve is the much more
expensive third-octave calculation done through a broadband
calculation. The solid red curve is the result using the range-av-
eraging technique described above. Note that the range-average
result lies on top of the true third-octave averaged result but re-
quires no more computation than that the single frequency.

The above excellent agreement is expected since the range-
averaging technique is derived based on an isovelocity medium.
To show that the method is also effective for more complicated
examples, we consider a summer-type profile from an experi-
ment off San Diego having a sound speed of 1508 m/s at the
surface with a thermocline that reduces the sound speed to about
1490 m/s at 40-m depth and nearly constant below that depth.
The results for this downward-refracting case are shown in the
lower panel of Fig. 17. Here, there are slight errors between
the range-averaged and frequency-averaged results; however, in
general, the agreement is excellent.

B. Frequency Averaging in Range-Dependent Environments

Considering the value of using a range averaging as opposed
to frequency averaging, we next look at the generalization to
more complicated range-dependent environments. The deriva-
tion is similar to the range-independent case except based on

Fig. 17. Equivalence of frequency and range averaging for a
range-independent environment with downward refracting (summerlike)
water-column sound-speed profile. The source is at 50 m and the receiver at
20 m. The light gray line is the single-frequency (200 Hz) calculation, the
black line is the frequency average (correct one-third octave average), and
the red line is the equivalent range average. (Color version available online
at http://ieeexplore.ieee.org.)

Fig. 18. Equivalence of frequency and range averaging for a range-dependent
environment with iso-speed water column and bathymetry changing from 100
m at the source location to 250 m ten downrange. The source is at 50 m and
the receiver at 20 m. The gray line is the single-frequency (200 Hz) calculation,
the black line is the frequency average (correct one-third octave average), the
red line is the equivalent range average using the relationship given by (25), and
the blue line is using the range-independent formulation (20). (Color version
available online at http://ieeexplore.ieee.org.)

the adiabatic-mode approximation for the pressure field [4] for
pressure in a range-dependent environment.

(21)
We again assume an iso-speed water column, and want to derive
the pressure fields at nearby frequencies using only the field at
the center frequency . That is, we define a range such that

(22)

for the range-dependent case. The horizontal wave number in-
tegral is approximated by

(23)

with being the range-dependent water depth. For the range
at center frequency to be equivalent to range at fre-

quency , the following condition must be met:

(24)

This can be written as

(25)
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where

(26)

Equation (25) has the same form as (20) but with the addition
of the range integral for the range-dependent case. In essence,
this formula allows us to compute the field at a new frequency
by simply evaluating the field at a nearby range point. The fact
that this is possible is a reflection of the existence of adiabatic
invariants [16], which in turn suggests other obvious generaliza-
tions. For instance, the formulas can be extended to deep-water
problems by calculating for the given environment. We also
note that some small improvements can be made by also ad-
justing the receiver depth at the different frequency bins to com-
pensate for small changes in the mode function evaluated at the
new receiver range (a similar approach was used for calculating
the effective source–receiver geometries in [17]). This is prob-
ably not necessary for third-octave averages but may be for other
applications. Finally, we note that this formula is applicable to
a variety of window functions. Thus, one can use a Gaussian
weighting across frequency as in [15], or one can use a flat or
boxcar weighting.

As an example of the method, we modify our previous ex-
ample by adding a sloping bottom with a depth of 100 m at the
source location, increasing to 250 m at 10-km range. The results
are shown in Fig. 18. The labeling is the same as in the pre-
vious cases except that a new solid blue curve has been added,
which shows the result using the range-independent formula
given by (20). Note that the corrected range-dependent range
average is nearly on top of the line for the true one-third octave
average, and the range-independent result is reasonable but does
not follow the true average as well.

V. CONCLUSION

One may imagine that over the next decade, it becomes a rou-
tine to do full three-dimensional broadband modeling of sound
propagation in the ocean environment. Such codes may even be-
come fast enough to be embedded as an inner loop in still more
complicated codes that do Monte Carlo simulations with varied
animal populations and dive patterns, as well as varied source
scenarios. However, the state of the art today does not permit
such brute-force modeling so a judicious selection of approxi-
mation techniques is required.

Here, we have presented several approaches that collectively
provide a powerful set of tools for modeling the effects of sound
on the marine environment. The first, based on high-frequency
asymptotics, uses Gaussian-beam tracing, and we have shown
how the technique can be used to implement a time-series
stimulator fully incorporating Doppler effects. Despite the
“high frequency” approximation, such methods can be used
to fairly low frequencies with perhaps 20 wavelengths in the
water column. To accommodate still lower frequencies, we

have discussed a coupled normal-mode approach. The two
methods are very complimentary in that as one increases fre-
quency, the normal-mode approach becomes computationally
burdensome at a frequency where the beam methods are poised
(i.e., sufficiently accurate) to carry the solution forward.

Finally, regardless of the fundamental acoustic model, one
commonly needs to predict the simpler metric of the third-oc-
tave averaged TL. We have shown how the simple range-aver-
aging techniques can be used to make such a broadband calcu-
lation significantly more efficient.

While these basic techniques provide a basis for studies of
environmental effects of sound on the marine environment, there
is clearly much more to be done. Future work will undoubtedly
carry these models forward to include the refractive effects due
to strong bathymetric features and/or ocean variability due to,
for instance, soliton packets.
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