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Abstract—In the Hudson Canyon experiment, a sound source
moved at a constant depth in 73 m of water while transmitting
four tonals. The signal was received on a vertical array of
hydrophones that spanned the water column. The data set from
this experiment has become a standard test case for studying
source tracking using matched-field processing. As part of that
process it was important to first determine a suitable environ-
ment model and demonstrate the feasibility of matched-field
processing. In this paper, we provide the background on the
original data processing that was done to accomplish this. Several
interesting results emerged from that study. Frequency averaging
was demonstrated to be extremely beneficial when used with
the Bartlett processor. However, the popular Minimum Variance
processor performed poorly. Finally we discuss a very simple
approach to combining the energy coherently that provided sig-
nificantly improved results.

I. INTRODUCTION

N 1993, a matched-field processing [4], [5] workshop was

held at the Naval Research Laboratory to provide a blind
test of methods for source-tracking [6]. Four of the test cases
were synthetic in that the acoustic field was generated by a
model. However, data from the Hudson Canyon experiment
[7], [8] were also made available. The site of the experiment
is in an area off the New Jersey coast where the ocean
bottom is nearly flat. (The experiment tracks are near but not
actually in the Hudson Canyon where the bottom is much
more complicated.)

For a detailed discussion on matched-field processing algo-
rithms we refer the reader to the monograph by Tolstoy [9]. In
this work, we will only review matched-field processing very
briefly. Fig. 1 shows a simulation of the acoustic intensity due
to a 50-Hz source in an environment similar to that of the
Hudson Canyon site. The actual array in the experiment sees
a characteristic intensity pattern depending on the array’s range
from the source. This pattern provides an acoustic fingerprint
that uniquely identifies the range to the source. Using an
acoustic model one can then simulate the field that would
be seen on a replica array placed at various ranges from the
source. The location that gives the best match in the intensity
pattern corresponds to the true position. In practice, the array
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Fig. 1. Matched-field processing.

is normally fixed and the source moves; however, the idea is
the same in both cases.

The simplified view of matched-field processing described
above conceals two key challenges. First, an accurate channel
model is required to simulate the acoustic intensity pat-
tern. Fortunately, there are many robust and well-documented
acoustic models readily available today [10] and for our
application the accuracy of the models is primarily limited
by environmental knowledge. Second, a variety of signal
processing methods can be used to identify the best match
between the acoustic fields seen on the real and replica arrays.
The simplest method measures the similarity of the data and
replica vectors by an inner product.

The structure of the paper is as follows. In Section II, we
provide an overview of the Hudson Canyon experiment and
demonstrate both narrow-band and broad-band tracking using
the Bartlett estimator. We then discuss the sensitivity of those
results to environmental parameters in Section III. In Section
1V, we study the performance of a popular high-resolution
estimator (the minimum variance method). In Section V,
we discuss an approach to exploiting broad-band energy
coherently. The relative performance of the coherent and
incoherent processors versus mismatch is then discussed in
Section VI. Finally we end with a summary and conclusions
in Section VIL

II. SOURCE TRACKING USING CONVENTIONAL PROCESSING

The scenario for the Hudson Canyon experiment is shown
in Fig. 2. The water depth is about 73 m and varied by less
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Fig. 2. The Hudson Canyon experiment.

than a meter along the track. The acoustic field was received
at an array consisting of 24 vertically separated hydrophones
spanning the water column.

Data were collected for two source tracks. The source
initially moved away from the receiving array from approx-
imately 500 m to a distance of 4.5 km and then returned
towards the receiver. The transmitted signal consisted of tones
at 50, 175, 375, and 425 Hz on the outgoing leg and 75, 275,
525, and 600 Hz on the incoming leg. Data were provided for
ten different source ranges (frames) for each leg and for each
range ten observations of the acoustic field were collected. The
source depth was always maintained at approximately 36 m.

As mentioned above, the source localization is done by
comparing the actual data vector d to a replica vector e(r, z).
The replica vector represents the field that would be seen on
the array if the source were at a hypothetical source position
{r, z). Both vectors contain 24 complex values representing
the amplitude and phase of the acoustic field on each phone.
Scanning across a domain of such coordinates we trace out a
surface (usually called an ambiguity surface) which measures
the similarity of the two fields. Thus, if the modeling is
accurate the ambiguity surface will have a peak at the correct
source position.

Using the Bartlett matched-field processing scheme, the
ambiguity surface is the dot-product of the normalized data and
replica vectors. However, to mitigate against noise in the data,
such dot products are formed for each of the 10 observations
obtained at each range and the results are then averaged. More
precisely, one forms

Pbart(r Z) = e*(rﬁ Z>Ce(7‘> Z), <1)

where Ppat(r, z) is the Bartlett ambiguity surface, C is the
covariance matrix of the received data (C = % vazl d,d;,
¢ =1,---,N where N = 10 is the number of data obser-
vations), and the asterisk denotes the conjugate transpose. In
this work the replica vectors are computed with the program
KRAKEN, which uses the method of normal modes [11], [12].

The resulting ambiguity surfaces are shown in Fig. 3 for a
case where the source was at a range of 1.8 km. Each of the
four tonals yields its own ambiguity surface as shown in the
upper four plots. The location of the peak on each surface is
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Bartlett ambiguity surfaces for the four tonals and their incoherent

shown by the large square. When there is a correct localization,
the larger square surrounds the small square which indicates
the actual source position. Thus, the processing is seen to be
successful for the two higher frequencies but fails on the lower
ones. Here we define a correct localization as one that is within
5 m in depth and 300 m in range of the true position.

The ambiguity surfaces with incorrect localizations still
contain useful information in that they tend to have a high
sidelobe at the correct position. Thus, researchers have sought
improved performance by averaging the ambiguity surfaces
across frequency. This process was studied in simulation in
[13]. In deep water the ambiguity surfaces tend to have
a regular structure across frequency so that the incoherent
averaging is expected to be less beneficial. However, in
shallow water the summed surface shown on the bottom of
Fig. 3 is improved in terms of peak-to-sidelobe level. Here
we have performed a linear summation:

Pin(:,bart(ra Z) = Z Pbatt,f(ra Z) (2)
f

where Py, (7, 2) is the ambiguity surface obtained from (1)
for frequency f. Addition in dB has been also suggested [13].

While the high peak-to-sidelobe level in the broad-band
surface in Fig. 3 is generally favorable, it can be obtained by
changing the grey-scale of the plot as has often been noted.
Furthermore, there are enough negotiable parameters in the
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Fig. 4. Incoherent Bartlett ambiguity surfaces during the outgoing leg.

problem (such as array tilt), that it is not difficult to obtain
a peak at any desired position. (This motivated the use of
blind test cases in the MFP workshop.) Thus, a persuasive
demonstration requires successful localizations at many ranges
keeping variables that should be static, unchanged. This is
shown in Fig. 4, which presents the ambiguity surfaces corre-
sponding to the 10 frames of the outgoing leg. The source is
tracked continuously as it moves from the array out to about
5 km.

We have shown the full sequence in Fig. 4 to illustrate
clearly the processing that is done and provide a sense of the
sidelobe structure that arises at different ranges. These results
can be further distilled by plotting the range-depth coordinate
of the peak vs. the actual range number as shown in Fig. 5.
Solid lines show the true coordinates of the source position;
asterisks indicate the estimated source location. The incoherent
Bartlett processor identifies the correct position of the source
in 18 out of 20 cases.

Fig. 5 shows the robustness of the processing as the source
moves in range. Similarly, one may ask whether the frequency
averaging provides a consistent improvement. A sense of this
may be derived from Table I which shows the number of
correct localizations when Bartlett processing is applied to
each of the four tonals. The percentage of correct localizations
with individual tones varies from 0% to 70%. Thus the

incoherent average is significantly better than the results -

obtained with any single tonal.

IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 21, NO. 4, OCTOBER 1996

o

4
Es
@
gz
1
0 . \ . L ; . . s L
2 4 6 8 10 12 14 16 18 20
frame #
(a)
T T T T T T T T T
60| * ]
E
4o x % |
E F ¥ ¥ ¥ X * x—x % X X ¥ X XX
@
hsl
20 B
ol— . L L ’ ) L ' .
2 4 6 8 10 12 14 16 18 20
frame #
(b)

Fig. 5. True and estimated source ranges and depths using the incoherent
broad-band Bartlett processor. (a) Range. (b) Depth.

TABLE 1
PERFORMANCE OF THE BARTLETT PROCESSOR VERSUS FREQUENCY

Outgoing leg Incoming leg
frequency | # correct || frequency | # correct
localizations localizations
50 0 75 2
175 5 275 3
375 7 525 2
425 7 600 1

A final point of interest in this plot is the performance
across frequency. At low frequencies the ambiguity surfaces
tend to have low peak-to-sidelobe level even in the absence
of environmental mismatch. Thus there are many candidate
source positions that lead to a similar acoustic fingerprint.
At high frequencies the ambiguity surface shows good peak-
to-sidelobe level but the peak is much more sensitive to
environmental perturbations. Considering these factors, one
intuitively expects that performance will be optimal at an
intermediate or mid-frequency band. The results in Table I
suggest that the optimum frequency for localization in the
Hudson Canyon scenario is around 300 Hz.

III. SENSITIVITY TO ENVIRONMENTAL MISMATCH

One of the well-known difficulties of matched-field pro-
cessing is the sensitivity to environmental information. In real
data experiments mismatch between the true and assumed
environmental parameters is inevitable. In this section, we try
to understand the sensitivity of the estimation process to the
environment.

Initially, a different model of the ocean subbottom structure
than that shown in Fig. 2 was considered. This environment, to
which we refer as the original environment, is shown in Fig. 6.
The original subbottom was obtained through a sophisticated
acoustical inversion process [8]. However, that inversion was
done along a track that was near but not coincident with
the track used in the experiment. The resulting matched-
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Fig. 7. True and estimated source ranges and depths using the original
environment. (a) Range. (b) Depth.

field processing estimates are shown in Fig. 7. While these
results are not as good as the ones obtained with the new
subbottom, they were extremely encouraging. Interestingly,
the new subbottom (Fig. 2) was obtained by a nonacoustic
method [14], [15]. However, with such limited data it is not
useful to try to draw conclusions about the relative merits of
the two inversion schemes; the performance difference may
not be statistically significant.

Another variable in these results was the ocean sound speed
profile. Initially four profiles were provided as shown in Fig. 8.
These profiles represent snapshots of the ocean at times a
few hours apart and, therefore, show the ocean variability
during the experiment. The results presented above used a
single representative profile (dotted line) that was obtained by
drawing a curve that appeared to summarize qualitatively all
four profiles. We refer to this as the empirical profile.

In an attempt to improve our results we calculated the mean
profile precisely. As may be seen in Fig. 9 empirical and mean
profiles differ by a few meters per second. The localization
results obtained using the mean profile are shown in Fig. 10
and are actually somewhat degraded compared to those of
Fig. 5. One may tentatively conclude from these results that
a practical system will require regular measurements of the
ocean sound speed profile.
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Fig. 8. The four measured sound speed profiles and the empirically selected

sound speed profile for the Hudson Canyon experiment.
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IV. MINIMUM VARIANCE PROCESSING

The MV processor [9], [16]-[18] has been widely con-
sidered as an alternative to the Bartlett estimator. Judging
its performance is a subtle process. When it provides a
correct localization it tends to produce a surface with higher
peak-to-sidelobe level than the Bartlett processor. One tends
to intuitively (but incorrectly) have more confidence in the
results. However, the high peak-to-sidelobe level is also seen
with incorrect results. Critics also point to the interesting but
often irrelevant property that its peak level varies significantly
with small changes in the environment. The main issue for
this application is whether the MV processor provides a
correct localization more consistently. The data from this
experiment provide a small but useful sample that contrasts
with our past experience in which both processors offered
similar performance.
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Fig. 10.. True and estimated source ranges and depths using a modified sound
speed profile. (a) Range, (b) Depth.

The MV ambiguity surface Pyy(r, z) is calculated in a
manner quite similar to the Bartlett surface:
1

e*(r, 2)C te(r, z)’ )

PMv('I’, Z) =

Usually the covariance matrix C' is formed from enough data
vectors that it is invertible. However, here only 10 observations
are available, so, following a standard procedure we loaded the
matrix diagonally by adding a small multiple of the identity
matrix to it. As before, we also sum the MV ambiguity surfaces
across frequency.

The results with the MV processor, shown in Fig. 11, are
quite poor showing only about 10% correct localizations.
To conjecture about the possible reasons for the poor MV
performance, it is useful to look at Fig. 12 which shows the
MYV ambiguity surfaces for 50, 175, 375, and 425 Hz along
with their sum for one particular case. Note that the power
level of the top surface (50 Hz) is much higher than that of the
other three. The sum (bottom ambiguity surface) is, therefore,
almost a replica of the 50-Hz MV ambiguity surface so that
there is no real gain from the incoherent average.

Having identified this problem, there are several obvious
fixes one might try. In particular, we implemented a new
incoherent MV processor by adding the narrowband surfaces
after first normalizing them to a maximum of 1. This raises
the interesting argument about how one should weigh ambi-
guity surfaces across frequency. The weighting is especially
important for the MV processor since its peak level can
vary significantly across frequency. However, even after the
normalization scheme, the MV localization results shown in
Fig. 13 are only mildly improved yielding a success rate of
approximately 30%.

Another factor degrading the performance of the incoherent
MYV processor is that the peaks on the MV surface are much
sharper than those of the Bartlett surface. In many cases, there
is a frequency-dependent bias in the peak position. Because of
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50 Hz

(a)

425 Hz

2 3
Range {km)

Fig. 12. MV ambiguity surfaces. (a) 50 Hz. (b) 175 Hz. (¢) 375 Hz. (d) 425
Hz. (e) Broad-band incoherent sum.

the narrowness of the peaks along with the presence of a bias,
stacking across frequencies does not lead to reinforcement.
Finally, it should be noted that we experimented with
different levels of diagonal loading of the covariance matrix.
The source location estimates varied with the loading level
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but the statistics of successful and poor localization remained
essentially unchanged.

V. COHERENT BROAD-BAND SOURCE LOCALIZATION

The processors discussed in Sections II and IV have an
intrinsic weakness in that they are discarding useful informa-
tion. They are incoherent space-only processors in the sense
that they exploit spatial coherence within a single frequency
and ignore coherence across frequencies. The implementation
of coherent processing has been proposed in [9], [19], [20].

Here, we suggest a space-frequency processor that exploits
correlations among the acoustic fields at different frequencies.
The new processor is based on the formulation of “super-
vectors.” To be precise, we denote the data vector for the mth
frequency by #sm. The super-vector is then:

z1
T2
y= )
M
‘If there are L hydrophones and M frequencies, the super-
vector is a column vector of ML elements. We may then
construct an extended covariance matrix from the super-
vectors and form Bartlett and MV surfaces in the usual way.
However, there is one important complication. The source
spectrum is not generally known, but the acoustic models
predicting the replica vectors assume it is given. If the replica
vectors are not adjusted for the source spectrum, then they will
not match the received field and the processor performance
will be severely degraded. (The Bartlett and MV surfaces are
insensitive to the phase and amplitude of a single frequency
but are sensitive to such variations across frequencies in the
super-vectors.)
To compensate for this problem, we have here scaled the
data and replica vectors at each frequency so that they have
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zero phase on the first phone and unit length. (This process
can be extended in several ways. For instance, in a low signal-
to-noise Ratio (SNR) case it would be better to use the phase
of the phone with the highest SNR for phase normalization.)
The results of the coherent Bartlett and MV processors are
shown in Figs. 14 and 15. Both figures indicate that the
new Bartlett and MV processors are successful 90% of the
time. The Bartlett performance is the same as that of the
incoherent Bartlett processor (Fig. 5). Fig. 15, however, shows
a great improvement for the MV processor, now yielding
nearly perfect tracking of the source in range and depth.
Ambiguity surfaces for both coherent processors computed
for the data used in Figs. 3 and 12 are shown in Fig. 16.
Comparing the coherent MV ambiguity surface of Fig. 16
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to the incoherent MV surface of Fig. 12, one can notice
the substantial improvement when frequency coherence is
accounted for in the estimation process. The source is localized
correctly in the coherent framework (estimated range was 1.79
m and estimated depth was 34 m), whereas the source location
estimates were wrong when the incoherent MV processor was
used (estimated range was 3.25 km and estimated depth was
62 m).

Extending the vectors across frequency may be compared
to increasing the spatial aperture of an array. Increasing
spatial aperture tends to improve robustness against mismatch.
Adding multiple frequencies coherently provides effectively an
increase in ‘aperture’ and a similar improvement in robustness.

V1. PERFORMANCE EVALUATION OF
INCOHERENT AND COHERENT PROCESSORS

In the above sections we have seen that incoherent averaging
provided a great improvement for the Bartlett surface but
not for the MV surface. We have also seen that a simple
coherent version of both processors provides excellent results
in both cases. One would like to understand whether this is
generally true. In the absence of additional data, we look
now at simulations to see if we can gain confidence in the
conclusions by duplicating them in simulation.

We conjecture that the performance differences can be
understood in terms of differences in the sensitivity of each of
the processors to environmental mismatch. In particular, we
have chosen to vary the ocean sound speed profile.

When the environment is known exactly and the SNR is
high, all four processors localize the source correctly. The
SNR for the simulations is set to 10 dB. In our simulations we
used the empirical profile, cemp, shown in Fig. 8 to generate
the replica fields. We then constructed an empirical orthogonal
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function, U(z) where z is depth, that represents the shape of
the dominant variation in the ensemble of sound speed profiles
[21].

A mismatched sound speed profile was then generated by
¢(2) = Cemp(2) + p¥(z) where p is a mismatch coefficient.
Fig. 17 shows the original profile and the perturbed profiles
for p = 10 and p = 50 (smallest and largest values of u used
here). Data were generated for frequencies of 50, 175, 375,
and 425 Hz for different values of u. Ten observations of data
vectors were created for every examined case adhering to the
parameters of the real data from the experiment.

Now, we will compare the four main processors discussed
above, that is the incoherent and coherent versions of the
Bartlett and MV estimators. (The incoherent MV processor
implemented here was the first one implemented in Section
1V, that is, the narrow-band ambiguity surfaces were added
without any normalization.) The statistic we study is the
probability of miss (wrong localizations) as the mismatch co-
efficient u is increased. The probability of miss was calculated
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after taking into account localization results for a number of
runs corresponding to different source locations and noise
realizations.

The results shown in Fig. 18 show many interesting fea-
tures. First, the incoherent MV processor appears to have
a much poorer performance than the other three processors,
having a high probability of miss even for a small mismatch
in the sound speed profile. The incoherent Bartlett and the
coherent Bartlett and MV processors are very similar in their
performance. However, there is a crossover point near y = 25.
For ;1 > 25 the two coherent processors show the best
performance but all three processors seem to converge for a
large degree of mismatch (u = 50). Note also that the coherent
Bartlett processor actually does better as the mismatch is
increased from p = 20 to p = 30. This is believed to be
a consequence of the limited number of trials that could be
included. We also note that simulations were done with the
number of observations increased from 10 to 100. However,
no substantial alteration of the comparative performances of
the processors was noticed.

In summary, it seems very difficult to conclude which
processor should be recommended. When mismatch with
respect to other parameters is considered, the performance
patterns of the different processors will likely be still more
complicated.

VII. SUMMARY AND CONCLUSION

Matched-field processing in shallow water has been gen-
erally viewed as a challenging proposition because of the
difficulty of accurately predicting the acoustic field in such
environments. In contrast to deep-water problems, there is
typically a strong effect of the ocean bottom which in turn is
typically known very inaccurately. Despite these difficulties,
the results presented here clearly demonstrate the feasibility
of continuous source tracking using matched-field processing.
However, the exploitation of broad-band information was seen
to be important in its success.

The comparison of different estimators revealed some inter-
esting properties. The MV processor performed much worse
than the simpler Bartlett estimator and an explanation has
been suggested. A simple scheme for exploiting coherence
between frequencies has also been demonstrated and shows a
significant pay-off in performance. In practice such coherences
may be strong or weak depending on the environment and the
frequencies being considered. In simulation, we have also seen
that the relative performance of the processors depends in a
complicated way on the environmental mismatch.
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